Mathematics 1350H - Linear algebra I: matrix algebra
 Trent University, Summer 2015
 MATH 1350H Test

1 June, 2015
Time: 60 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Do any two (2) of a-c. $[10=2 \times 5$ each]

Consider the lines given by the vector-parametric equations $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+t\left[\begin{array}{l}2 \\ 2\end{array}\right]$, $t \in \mathbb{R}$, and $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+s\left[\begin{array}{l}3 \\ 2\end{array}\right], s \in \mathbb{R}$.
a. Find the angle between the lines.
b. Find an equation of the form $a x+b y=c$ for each of the lines.
c. Find the point where the lines intersect.
2. Do any two (2) of a-c. $[10=2 \times 5$ each]

Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$.
a. Find the angle θ between \mathbf{u} and \mathbf{v}.
b. Solve the equation $\mathbf{u}-2 \mathbf{v}+3 \mathbf{w}-4 \mathbf{x}=\mathbf{0}$ for \mathbf{x}.
c. Find the components of \mathbf{w} that are, respectively, parallel to and perpendicular to \mathbf{v}.

$$
\begin{gathered}
2 x+y+z=4 \\
x+2 y+z=4 \\
x+y+2 z=4
\end{gathered}
$$

3. Consider the following system of linear equations: $x+2 y+z=4$
a. Find all the solutions, if any, of this system. [8]
b. Use your answer to a to determine whether the vectors $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ are linearly dependent or independent. [2]
4. As in $\mathbf{2}$, let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$. In addition, let $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right]$.
a. Determine whether $\mathbf{x} \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. [8]
b. Determine whether \mathbf{u}, \mathbf{v}, and \mathbf{w} are linearly dependent or independent. [2]

$$
[\text { Total }=40]
$$

