Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2015

 Quizzes

 Quizzes}

Quiz \#1. Wednesday, 13 May, 2015. [10 minutes]

1. Find the vector in \mathbb{R}^{2} that would take you from the point $(1,-1)$ to the point $(2,1)$ and sketch it. [3]
2. Find the vector in \mathbb{R}^{3} of length 10 in the same direction as $\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]$. [2]

Quiz \#2. Wednesday, 20 May, 2015. [12 minutes]
Consider the lines in \mathbb{R}^{3} given by the vector equations $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], t \in \mathbb{R}$, and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+s\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], s \in \mathbb{R}$.

1. Find the point where the lines intersect. [0.5]
2. Find the angle between the lines [2]
3. Find an equation of the form $a x+b y+c z=d$ of the plane that includes both lines. [2.5]

Quiz \#3. Monday, 25 May, 2015. [20 minutes]

1. The following system of linear equations has exactly one solution. Use the GaussJordan method to find it. Show all your work. [5]

$$
\begin{aligned}
& 2 x+y+3 z=2 \\
& x+z=1 \\
& x-y-z=2
\end{aligned}
$$

Quiz \#4. Wednesday, 27 May, 2015. [20 minutes]

1. Determine whether the vectors $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 7 \\ 8\end{array}\right]$, and $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ are linearly dependent or independent. [5]

Quiz \#5. Wednesday, 3 June, 2015. [15 minutes]

1. Find the inverse matrix of $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ or show that it does not have an inverse. [5]

Quiz \#6. Monday, 8 June, 2015. [15 minutes]
Determine whether each of the following sets is a subspace of \mathbb{R}^{2} or not.

1. $U=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, 2 x-y=0\right\}[1.5]$
2. $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, 2 x-y=13\right\}[1.5]$
3. $W=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x^{2}-y=0\right\}[2]$

Take-Home Quiz \#7. Due on Wednesday, 10 June, 2015. [15 minutes]
With apologies to Prof. Tolkien ...
If the Númenoreans had been mathematicians, perhaps the rhyme of lore* Gandalf quotes to Pippin during the ride from Rohan to Gondor in the The Lord of the Rings would have been something like:

Tall ships and tall kings
Three times three,
What brought they from the foundered land
Over the flowing sea?
Seven points and seven lines
In one geometry:
Every point met three lines,
Every line met points three,
Every pair of points connected,
Every line pair intersected.

1. Draw a picture of this alternate universe Númenorean geometry. [5]

Quiz \#8. Wednesday, 10 June, 2015. [15 minutes]

1. Find a basis for the subspace $U=\left\{\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right] \left\lvert\, \begin{array}{cccccc}2 x-y+ & z & - & 2 w & = & 0 \\ -x+2 y+ & z & + & w & = & 0 \\ x+ & y & + & 2 z & - & = \\ 4 x+ & y+5 z & - & 4 w & = & 0\end{array}\right.\right\}$ of \mathbb{R}^{4}. [5]
[^0]Quiz \#9. Monday, 9 June, 2015. [20 minutes]
Let $\mathbf{A}=\left[\begin{array}{llll}1 & 2 & 2 & 1 \\ 3 & 5 & 5 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$.

1. Apply the Gauss-Jordan algorithm to fully row-reduce A. [1]
2. Use the results of your computation for question 1 to help find the following:
a. The rank and nullity of \mathbf{A}. [0.5]
b. Whether \mathbf{A} is invertible or not. [0.5]
c. A basis for the row space, $\operatorname{row}(\mathbf{A})$, of \mathbf{A}. [1]
d. A basis for the column space, $\operatorname{col}(\mathbf{A})$, of \mathbf{A}. [1]
e. A basis for the null space, $\operatorname{null}(\mathbf{A})$, of \mathbf{A}. [1]

[^0]: * "Tall ships and tall kings/ Three times three,/ What brought they from the foundered land/ Over the flowing sea?/ Seven stars and seven stones/ And one white tree."

