Mathematics 1350H – Linear algebra I: Matrix algebra

TRENT UNIVERSITY, Summer 2015

Quizzes

Quiz #1. Wednesday, 13 May, 2015. [10 minutes]

- 1. Find the vector in \mathbb{R}^2 that would take you from the point (1,-1) to the point (2,1) and sketch it. [3]
- 2. Find the vector in \mathbb{R}^3 of length 10 in the same direction as $\begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$. [2]

Quiz #2. Wednesday, 20 May, 2015. [12 minutes]

Consider the lines in \mathbb{R}^3 given by the vector equations $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, t \in \mathbb{R},$

and $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, s \in \mathbb{R}.$

- 1. Find the point where the lines intersect. [0.5]
- 2. Find the angle between the lines [2]
- 3. Find an equation of the form ax + by + cz = d of the plane that includes both lines. [2.5]

Quiz #3. Monday, 25 May, 2015. [20 minutes]

1. The following system of linear equations has exactly one solution. Use the Gauss-Jordan method to find it. Show all your work. [5]

 $\mathbf{Quiz}~\#\mathbf{4.}$ Wednesday, 27 May, 2015. [20 minutes]

1. Determine whether the vectors $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\7\\8 \end{bmatrix}$, and $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ are linearly dependent or independent. [5]

Quiz #5. Wednesday, 3 June, 2015. [15 minutes]

1. Find the inverse matrix of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ or show that it does not have an inverse. [5]

1

Quiz #6. Monday, 8 June, 2015. [15 minutes]

Determine whether each of the following sets is a subspace of \mathbb{R}^2 or not.

1.
$$U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| 2x - y = 0 \right\}$$
 [1.5] 2. $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| 2x - y = 13 \right\}$ [1.5] 3. $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x^2 - y = 0 \right\}$ [2]

Take-Home Quiz #7. Due on Wednesday, 10 June, 2015. [15 minutes] With apologies to Prof. Tolkien . . .

If the Númenoreans had been mathematicians, perhaps the rhyme of lore* Gandalf quotes to Pippin during the ride from Rohan to Gondor in the *The Lord of the Rings* would have been something like:

Tall ships and tall kings

Three times three,

What brought they from the foundered land

Over the flowing sea?

Seven points and seven lines

In one geometry:

Every point met three lines,

Every line met points three,

Every pair of points connected,

Every line pair intersected.

1. Draw a picture of this alternate universe Númenorean geometry. [5]

Quiz #8. Wednesday, 10 June, 2015. [15 minutes]

1. Find a basis for the subspace
$$U = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \middle| \begin{array}{llll} 2x & - & y & + & z & - & 2w & = & 0 \\ -x & + & 2y & + & z & + & w & = & 0 \\ x & + & y & + & 2z & - & w & = & 0 \\ 4x & + & y & + & 5z & - & 4w & = & 0 \end{array} \right\}$$
 of \mathbb{R}^4 . [5]

 $^{^{\}ast}$ "Tall ships and tall kings/ Three times three,/ What brought they from the foundered land/ Over the flowing sea?/ Seven stars and seven stones/ And one white tree."

Quiz #9. Monday, 9 June, 2015. [20 minutes]

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 5 & 5 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
.

- 1. Apply the Gauss-Jordan algorithm to fully row-reduce A. [1]
- 2. Use the results of your computation for question 1 to help find the following:
 - a. The rank and nullity of A. [0.5]
 - b. Whether **A** is invertible or not. [0.5]
 - c. A basis for the row space, $row(\mathbf{A})$, of \mathbf{A} . [1]
 - d. A basis for the column space, $col(\mathbf{A}),$ of $\mathbf{A}.$ [1]
 - e. A basis for the null space, $null(\mathbf{A})$, of \mathbf{A} . [1]