Mathematics 1350H – Linear algebra I: Matrix algebra

TRENT UNIVERSITY, Summer 2015

Quizzes

Quiz #1. Wednesday, 13 May, 2015. [10 minutes]

- 1. Find the vector in \mathbb{R}^2 that would take you from the point (1, -1) to the point (2, 1) and sketch it. [3]
- 2. Find the vector in \mathbb{R}^3 of length 10 in the same direction as $\begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$. [2]

SOLUTIONS. 1. The vector that would take you from (1, -1) to (2, 1) is $\begin{bmatrix} 2-1\\ 1-(-1) \end{bmatrix} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$. Here is a sketch:

2. The given vector has length $\left\| \begin{bmatrix} 3\\0\\4 \end{bmatrix} \right\| = \sqrt{3^2 + 0^2 + 4^2} = \sqrt{9 + 0 + 16} = \sqrt{25} = 5.$ Scaling the vector by $\frac{10}{5} = 2$ will give a vector of length 10 in the same direction (since 2 is positive – scaling by a negative number reverses direction): $2 \begin{bmatrix} 3\\0\\4 \end{bmatrix} = \begin{bmatrix} 2 \cdot 3\\2 \cdot 0\\2 \cdot 4 \end{bmatrix} = \begin{bmatrix} 6\\0\\8 \end{bmatrix}.$ Being just a bit paranoid, we check that this really does give a vector of length 10:

$$\left\| \begin{bmatrix} 6\\0\\8 \end{bmatrix} \right\| = \sqrt{6^2 + 0^2 + 8^2} = \sqrt{36 + 0 + 64} = \sqrt{100} = 10$$

Quiz #2. Wednesday, 20 May, 2015. [12 minutes]

Consider the lines in \mathbb{R}^3 given by the vector equations $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, t \in \mathbb{R},$

and
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, s \in \mathbb{R}.$$

- 1. Find the point where the lines intersect. [0.5]
- 2. Find the angle between the lines [2]
- 3. Find an equation of the form ax + by + cz = d of the plane that includes both lines. [2.5]

SOLUTIONS. 1. The base point for both lines, (1, 1, 1), is on both lines ... For the truly paranoid, observe that with s = t = 0, we have:

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} + 0 \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + 0 \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \square$$

2. The angle between the lines is the angle θ between their direction vectors. Using the formula $\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$, we get:

$$\cos(\theta) = \frac{\begin{bmatrix} 1\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\0\\-1 \end{bmatrix}}{\left\| \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\| \left\| \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\|} = \frac{1 \cdot 1 + 0 \cdot 0 + 1 \cdot (-1)}{\sqrt{1^2 + 0^2 + 1^2}\sqrt{1^2 + 0^2 + (-1)^2}} = \frac{0}{\sqrt{2}\sqrt{2}} = 0$$

It follows that $\theta = \frac{\pi}{2}$, *i.e.* the angle between the direction vectors is a right angle, so the lines are perpendicular to each other.

As a belated sanity check, note that since the two lines do intersect, by the solution to question 1, it makes sense to speak of the angle between them. \Box

3. As an upfront sanity check, note that two intersecting lines define a plane, and the given lines do intersect by the solution to question 1.

Recall that a plane in \mathbb{R}^3 with normal vector **n** and base vector **d** consists of all points

(x, y, z) such that $\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{d}$, where $\mathbf{x} = \begin{bmatrix} x \\ y \\ x \end{bmatrix}$ is the vector from the origin to the point. We can use the base vector common to both of the given lines as the base vector of the

plane containing them, *i.e.* $\mathbf{d} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

It remains to find a suitable normal vector **n**. This vector must be perpendicular to, *i.e.* have a dot product of zero with, both of the direction vectors of the given lines, namely $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$. Using the Eyeball Theorem, it's pretty easy to see that any vector with x- and z-coordinates equal to zero and a non-zero y-coordinate will do the job. For example, $\mathbf{n} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ will do. Thus $y = 0x + 1y + oz = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1 \end{bmatrix} = 0 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 = 1,$

i.e. y = 1, is an equation of the plane.

_

One could, of course, obtain a suitable normal vector in other ways. For one example, one could take the cross product of the direction vectors of the lines to get a vector perpendicular to both:

$$\mathbf{n} = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \times \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1\\ 1 & 0 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 1\\0 & -1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 1\\1 & -1 \end{vmatrix} + \begin{vmatrix} 1 & 0\\1 & 0 \end{vmatrix} \mathbf{k}$$
$$= (0 \cdot (-1) - 0 \cdot 1) \mathbf{i} - (1 \cdot (-1) - 1 \cdot 1) \mathbf{j} + (1 \cdot 0 - 1 \cdot 0) \mathbf{k} = 0\mathbf{i} + 2\mathbf{j} + 0\mathbf{k} = 2\mathbf{j} = \begin{bmatrix} 0\\2\\0 \end{bmatrix}$$

Note that there are other ways to compute the cross product of two vectors; the method above previews determinants, which we will see more of later in the course.

Quiz #3. Monday, 25 May, 2015. [20 minutes]

1. The following system of linear equations has exactly one solution. Use the Gauss-Jordan method to find it. Show all your work. [5]

SOLUTION. We put the system of equations into augmented matrix form and go nuts on row operations:

$$\begin{bmatrix} 2 & 1 & 3 & | & 2 \\ 1 & 0 & 1 & | & 1 \\ 1 & -1 & -1 & | & 2 \end{bmatrix} \stackrel{R_1 \leftrightarrow R_2}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 2 & 1 & 3 & | & 2 \\ 1 & -1 & -1 & | & 2 \end{bmatrix} \stackrel{R_2 - 2R_1}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & -1 & -2 & | & 1 \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & | & -1 \end{bmatrix} \stackrel{R_1 - R_3}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

The final augmented matrix represents the system of equations x = 2, y = 1, and z = -1, which gives the solution to the original system of linear equations.

Quiz #4. Wednesday, 27 May, 2015. [20 minutes]

1. Determine whether the vectors $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\7\\8 \end{bmatrix}$, and $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ are linearly dependent or independent. [5]

SOLUTION. As described in class and the textbook, this problem reduces to whether the only way to get scalars a, b, and c such that $a \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} 3 \\ 7 \\ 8 \end{bmatrix} + c \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is to have a = b = c = 0 [independence] or not [dependence]. We set up the usual augmented matrix and Gauss-Jordan away:

$$\begin{bmatrix} -1 & 3 & 3 & | & 0 \\ 1 & 7 & 2 & | & 0 \\ 2 & 8 & 1 & | & 0 \end{bmatrix} \stackrel{(-1)R_1}{\Longrightarrow} \begin{bmatrix} 1 & -3 & -3 & | & 0 \\ 1 & 7 & 2 & | & 0 \\ 2 & 8 & 1 & | & 0 \end{bmatrix} \stackrel{R_2 - R_1}{\Longrightarrow} \begin{bmatrix} 1 & -3 & -3 & | & 0 \\ 0 & 10 & 5 & | & 0 \\ 0 & 14 & 7 & | & 0 \end{bmatrix}$$
$$\implies \begin{bmatrix} 1 & -3 & -3 & | & 0 \\ 0 & 14 & 7 & | & 0 \\ 1 & 1 & \frac{1}{2} & | & 0 \\ 0 & 14 & 7 & | & 0 \end{bmatrix} \stackrel{R_1 + 3R_2}{\Longrightarrow} \begin{bmatrix} 1 & 0 & -\frac{3}{2} & | & 0 \\ 0 & 1 & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \stackrel{[\text{That is, } a - \frac{3}{2}c = 0}{\text{and } b + \frac{1}{2}c = 0.]}$$

Since c can be set to any value and corresponding values of a and b found, a = b = c = 0 is not the only solution, so the given vectors are linearly dependent.

Quiz #5. Wednesday, 3 June, 2015. [15 minutes]

1. Find the inverse matrix of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ or show that it does not have an inverse. [5]

SOLUTION. We set up the "super-augmented" matrix and do the Gauss-Jordan tango:

It follows that the given matrix does have an inverse, namely

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} . \blacksquare$$

Quiz #6. Monday, 8 June, 2015. [15 minutes]

Determine whether each of the following sets is a subspace of \mathbb{R}^2 or not.

1.
$$U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| 2x - y = 0 \right\} [1.5]$$

2. $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| 2x - y = 13 \right\} [1.5]$
3. $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x^2 - y = 0 \right\} [2]$

SOLUTIONS. 1. U is indeed a subspace. First, if $\begin{bmatrix} x \\ y \end{bmatrix} \in U$, so 2x - y = 0, and c is any scalar, then $c \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} cx \\ cy \end{bmatrix} \in U$ too, because $2cx - cy = c(2x - y) = c \cdot 0 = 0$. Second, if $\begin{bmatrix} x \\ y \end{bmatrix} \in U$ and $\begin{bmatrix} s \\ t \end{bmatrix} \in U$, so 2x - y = 0 and 2s - t = 0, then $\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} x + s \\ y + t \end{bmatrix} \in U$ too, because 2(x + s) - (y + t) = (2x - y) + (2s - t) = 0 + 0 = 0. \Box 2. V is not a subspace because $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \notin V$ since $2 \cdot 0 - 0 = 0 \neq 13$. \Box 3. W is not a subspace because it is not closed under scalar multiplication. For example, $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in W$ because $1^2 - 1 = 1 - 1 = 0$, but $(-1) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \notin W$ because $(-1)^2 - (-1) = 1 = 0$.

 $1 + 1 = 2 \neq 0$. [It is also not closed under vector addition, by the way.]

Take-Home Quiz #7. Due on Wednesday, 10 June, 2015. [15 minutes]

With apologies to Prof. Tolkien ...

If the Númenoreans had been mathematicians, perhaps the rhyme of lore^{*} Gandalf quotes to Pippin during the ride from Rohan to Gondor in the *The Lord of the Rings* would have been something like:

Tall ships and tall kings Three times three, What brought they from the foundered land Over the flowing sea? Seven points and seven lines In one geometry: Every point met three lines, Every line met points three, Every pair of points connected, Every line pair intersected.

1. Draw a picture of this alternate universe Númenorean geometry. [5]

SOLUTION. Here's a sketch of the *Fano configuration*, also called the *Fano plane*, which is the smallest finite projective plane:

 $^{^{*}}$ "Tall ships and tall kings/ Three times three,/ What brought they from the foundered land/ Over the flowing sea?/ Seven stars and seven stones/ And one white tree."

Quiz #8. Wednesday, 10 June, 2015. [15 minutes]

1. Find a basis for the subspace $U = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \middle| \begin{array}{cccc} 2x & - & y & + & z & - & 2w & = & 0 \\ -x & + & 2y & + & z & + & w & = & 0 \\ x & + & y & + & 2z & - & w & = & 0 \\ 4x & + & y & + & 5z & - & 4w & = & 0 \end{array} \right\}$ of \mathbb{R}^4 . [5]

SOLUTION. As usual, we use Gauss-Jordan reduction on the homogeneous system defining the subspace and use the parameteric presentation of the set of solutions to extract a basis.

$$\begin{bmatrix} 2 & -1 & 1 & -2 & | & 0 \\ -1 & 2 & 1 & 1 & | & 0 \\ 1 & 1 & 2 & -1 & | & 0 \\ 4 & 1 & 5 & -4 & | & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & 1 & 2 & -1 & | & 0 \\ -1 & 2 & 1 & 1 & | & 0 \\ 2 & -1 & 1 & -2 & | & 0 \\ 2 & -1 & 1 & 5 & -4 & | & 0 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 1 & 2 & -1 & | & 0 \\ 0 & 3 & 3 & 0 & | & 0 \\ 0 & -3 & -3 & 0 & | & 0 \\ 0 & -3 & -3 & 0 & | & 0 \end{bmatrix} \xrightarrow{\frac{1}{3}R_2} \begin{bmatrix} 1 & 1 & 2 & -1 & | & 0 \\ 0 & 1 & 1 & 0 & | & 0 \\ 0 & -3 & -3 & 0 & | & 0 \\ 0 & -3 & -3 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & 1 & 2 & -1 & | & 0 \\ 0 & 1 & 1 & 0 & | & 0 \\ 0 & -3 & -3 & 0 & | & 0 \\ 0 & -3 & -3 & 0 & | & 0 \end{bmatrix}$$

$$R_1 - R_2 \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 & 1 & -1 & | & 0 \\ 0 & 1 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$That is, x + z - w = 0$$

$$and y + z = 0.$$

Given any values for z and w, we can clearly solve for x and y. We set z = s and w = t for parameters s and t. Then

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -z+w \\ -z \\ z \\ w \end{bmatrix} = \begin{bmatrix} -s+t \\ -s \\ s \\ t \end{bmatrix} = \begin{bmatrix} -s \\ -s \\ s \\ 0 \end{bmatrix} + \begin{bmatrix} t \\ 0 \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$
so $B = \left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis for U .

Quiz #9. Monday, 9 June, 2015. [20 minutes]

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 5 & 5 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
.

1. Apply the Gauss-Jordan algorithm to fully row-reduce \mathbf{A} . [1]

- 2. Use the results of your computation for question 1 to help find the following:
 - a. The rank and nullity of **A**. [0.5]
 - b. Whether **A** is invertible or not. [0.5]
 - c. A basis for the row space, $row(\mathbf{A})$, of \mathbf{A} . [1]
 - d. A basis for the column space, $col(\mathbf{A})$, of \mathbf{A} . [1]
 - e. A basis for the null space, $null(\mathbf{A})$, of \mathbf{A} . [1]

SOLUTIONS. 1. Here goes:

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 5 & 5 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$$

$$\begin{array}{c} R_2 \leftrightarrow R_3 \\ \Longrightarrow \\ R_2 \leftrightarrow R_3 \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \\ \begin{array}{c} R_1 - 2R_2 \\ R_3 + R_2 \\ R_3 + R_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2a. Since the fully-reduced matrix has two non-zero rows, $\operatorname{rank}(\mathbf{A}) = 2$. It follows that $\operatorname{nullity}(\mathbf{A}) = (\# \text{ columns of } \mathbf{A}) - \operatorname{rank}(\mathbf{A}) = 4 - 2 = 2$. \Box

2b. Since **A** is a 4×4 matrix with rank(**A**) = 2 < 4, **A** is not invertible. \Box

2c. The non-zero rows of the reduced matrix, $\begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$, are a basis for row(A). \Box

2d. The columns of **A** corresponding to the columns of the reduced matrix in which the $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

leading 1s of rows occur, $\begin{bmatrix} 1\\3\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\5\\1\\1 \end{bmatrix}$, are a basis for col(**A**). \Box

2e. By definition, the null space of **A** is the set of solutions of $\mathbf{Ax} = \mathbf{0}$, it i.e. of the homogeneous linear ystem whose coefficient matrix is **A**. If we fully reduce the correspond-

ing augmented matrix $[\mathbf{A} \mid \mathbf{0}] = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 \\ 3 & 5 & 5 & 2 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$, using the same operations as in the

to the reduced system of equations x - w = 0 and y + z + w = 0. Setting z = s and w = t for parameters s and t, we get x = t and y = -s - t, so the solutions to the homogeneous system have the vector-parametric form:

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} t \\ -s - t \\ s \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ -s \\ s \\ 0 \end{bmatrix} + \begin{bmatrix} t \\ -t \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

It follows that the vectors $\begin{bmatrix} 0\\-1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1\\0\\1 \end{bmatrix}$ form a basis for null(**A**).