Mathematics 1350H – Linear algebra I: Matrix algebra

TRENT UNIVERSITY, Summer 2015

FINAL EXAMINATION Friday, 19 June, 2015

Time: 3 hours

Brought to you by Стефан Біланюк.

Instructions: Do parts **A** and **B**, and, if you wish, part **C**. Show all your work. *If in doubt about something*, **ask!**

Aids: Calculator; one $8.5'' \times 11''$ or A4 aid sheet; ≤ 1 brain.

Part A. Do all four (4) of questions 1–4.

[Subtotal = 64/100]

1. Consider the following system of linear equations and its coefficient matrix A:

		v			+	y			=	2			٢0	1	0	1	ך 0
u	+	4v	+	5x	+	4y	+	z	=	15	and	٨	1	4	5	4	1
u			+	x			+	z	=	3	and	$\mathbf{A} \equiv$	1	0	1	0	1
		2v	+	2x	+	2y			=	6			LO	2	2	2	0

Note that u = v = x = y = z = 1 is a solution of this system of linear equations.

- **a.** Without any calculations, determine how many solutions this system has. [3]
- **b.** Use Gauss-Jordan reduction to find all the solutions of this system. [10]
- c. Find the rank and nullity of A. [2]
- **d.** Find a basis for the column space of **A**. [2]
- e. Find a basis for the null space of A. [3]

2. Consider the plane and line in \mathbb{R}^3 given by the linear equation x + y + 2z = 6 and the parametric equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, t \in \mathbb{R}$, respectively.

- **a.** Sketch the line. [3]
- **b.** Sketch the plane. [2]
- **c.** Determine whether or not the line is contained in the plane. [5]

3. Let $\mathbf{A} = \begin{bmatrix} 2 & 3 & 2 \\ 3 & 8 & 2 \\ 1 & 1 & 1 \end{bmatrix}$.	ists. [10]
a. Compute \mathbf{A}^{-1} , if it exists b. What are the rank and c. How many solutions x	d nullity of \mathbf{A} ? Why? [2]
d. Compute $ \mathbf{A} $. $ 5 $	are there to $\mathbf{Ax} = 0$? [2]

4. Consider the subspace
$$W = \operatorname{Span} \left\{ \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \right\} \text{ of } \mathbb{R}^4.$$

- **a.** Find a basis for W. [10]
- **b.** Find an orthogonal basis for W. [5]

Part B. Do any three (3) of questions **5–10**.

[Subtotal = 36/100]

5. Determine whether each of the following is a subspace of \mathbb{R}^2 or not. $[12 = 3 \times 4 \text{ each}]$

a.
$$U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| xy = 0 \right\}$$
 b. $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \cos(x+y) = 1$
c. $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| (x+y+\pi)^2 = (x-y+\pi)^2 \right\}$

- 6. Recall that $\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathbf{O}_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Find a 2 × 2 matrix \mathbf{X} different from \mathbf{I}_2 which satisfies the equation $\mathbf{X}^2 2\mathbf{X} + \mathbf{I}_2 = \mathbf{O}_2$, or show that \mathbf{I}_2 is the only matrix that satisfies the equation. [12]
- 7. Find the shortest distance from the point (3,3,1) to the line given by the parametric equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. [12]

Hint: There can be no objection to removing a projection to get orthogonality!

8. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation such that $T\left(\begin{bmatrix} -1\\1\\1 \end{bmatrix} \right) = \begin{bmatrix} 0\\2\\2 \end{bmatrix}$, $T\left(\begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right) = \begin{bmatrix} 2\\0\\2 \end{bmatrix}$, and $T\left(\begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right) = \begin{bmatrix} 2\\2\\0 \end{bmatrix}$. Find the matrix [T] of T (that is, such that $[T]\mathbf{x} = T(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^3$). [12]

9. Give examples in each case, or explain why none exist, of 3×3 matrices **A** and **B** which have inverses such that:

a. A – B has no inverse. [3]
b. A – B has an inverse. [3]
c. AB has no inverse. [3]
d. AB has an inverse. [3]

10. Let $\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. **a.** Find all the eigenvalues of **B**. [5] **b.** Find a nonzero eigenvector for each eigenvalue of **B**. [5] **c.** Without computing it, what is $|\mathbf{B}|$? [2]

$$[Total = 100]$$

Part C. Bonus!

0. Write an original little poem about linear algebra or mathematics in general. [1]

FRANKENFURTER, IT'S ALL OVER! GO FORTH AND ENJOY THE SUMMER!