Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2015
 Final Examination
 Friday, 19 June, 2015

Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Do parts \mathbf{A} and \mathbf{B}, and, if you wish, part \mathbf{C}. Show all your work. If in doubt about something, ask!
Aids: Calculator; one $8.5^{\prime \prime} \times 11^{\prime \prime}$ or A4 aid sheet; ≤ 1 brain.
Part A. Do all four (4) of questions 1-4.
[Subtotal $=64 / 100]$

1. Consider the following system of linear equations and its coefficient matrix \mathbf{A} :

$$
\begin{aligned}
v & +y \\
u+4 v & =2 \\
u+5 x+x & +4 y+z \\
u & =15 \\
2 v+2 x+2 y & \\
u & =3
\end{aligned} \quad \text { and } \quad \mathbf{A}=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 4 & 5 & 4 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 2 & 2 & 2 & 0
\end{array}\right]
$$

Note that $u=v=x=y=z=1$ is a solution of this system of linear equations.
a. Without any calculations, determine how many solutions this system has. [3]
b. Use Gauss-Jordan reduction to find all the solutions of this system. [10]
c. Find the rank and nullity of A. [2]
d. Find a basis for the column space of \mathbf{A}. [2]
e. Find a basis for the null space of A. [3]
2. Consider the plane and line in \mathbb{R}^{3} given by the linear equation $x+y+2 z=6$ and the parametric equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]+t\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right], t \in \mathbb{R}$, respectively.
a. Sketch the line. [3]
b. Sketch the plane. [2]
c. Determine whether or not the line is contained in the plane. [5]
3. Let $\mathbf{A}=\left[\begin{array}{lll}2 & 3 & 2 \\ 3 & 8 & 2 \\ 1 & 1 & 1\end{array}\right]$.
a. Compute \mathbf{A}^{-1}, if it exists. [10]
b. What are the rank and nullity of A? Why? [2]
c. How many solutions \mathbf{x} are there to $\mathbf{A x}=\mathbf{0}$? [2]
d. Compute $|\mathbf{A}|$. [5]
4. Consider the subspace $W=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{4}.
a. Find a basis for W. [10]
b. Find an orthogonal basis for W. [5]

Part B. Do any three (3) of questions 5-10.
5. Determine whether each of the following is a subspace of \mathbb{R}^{2} or not. [12 $\left.=3 \times 4 \mathrm{each}\right]$
a. $U=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x y=0\right\}$
b. $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, \cos (x+y)=1\right\}$
c. $W=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\,(x+y+\pi)^{2}=(x-y+\pi)^{2}\right\}$
6. Recall that $\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\mathbf{O}_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Find a 2×2 matrix \mathbf{X} different from \mathbf{I}_{2} which satisfies the equation $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{O}_{2}$, or show that \mathbf{I}_{2} is the only matrix that satisfies the equation. [12]
7. Find the shortest distance from the point $(3,3,1)$ to the line given by the parametric equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \cdot[12]$
Hint: There can be no objection to removing a projection to get orthogonality!
8. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that $T\left(\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$, $T\left(\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]$, and $T\left(\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$. Find the matrix $[T]$ of T (that is, such that $[T] \mathbf{x}=T(\mathbf{x})$ for all $\left.\mathbf{x} \in \mathbb{R}^{3}\right)$. [12]
9. Give examples in each case, or explain why none exist, of 3×3 matrices \mathbf{A} and \mathbf{B} which have inverses such that:
a. $\mathbf{A}-\mathbf{B}$ has no inverse. [3]
b. $\mathbf{A}-\mathbf{B}$ has an inverse. [3]
c. AB has no inverse. [3]
d. AB has an inverse. [3]
10. Let $\mathbf{B}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
a. Find all the eigenvalues of B. [5]
b. Find a nonzero eigenvector for each eigenvalue of B. [5]
c. Without computing it, what is $|\mathbf{B}|$? [2]

$$
[\text { Total }=100]
$$

Part C. Bonus!
0. Write an original little poem about linear algebra or mathematics in general. [1]

> FRANKENFURTER, IT'S ALL OVER!
> GO FORTH AND ENJOY THE SUMMER!

