Mathematics 1350H - Linear algebra I: matrix algebra

Trent University, Summer 2015
Assignment \#5
Due on Monday, 15 June, 2015.
"What is the matrix?"

1. Find a 2×2 matrix \mathbf{X} such that $\mathbf{X}^{2}=-\mathbf{I}_{2}$. [2]
2. Verify that if \mathbf{X} is the matrix you obtained in $\mathbf{1}$, and $\mathbf{A}=a \mathbf{I}_{2}+b \mathbf{X}$ for scalars a and b (not both 0), then \mathbf{A} is invertible and there are scalars d and c such that $\mathbf{A}^{-1}=d \mathbf{I}_{2}+c \mathbf{X} . \quad$ 3]
3. Find 4×4 matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that $\mathbf{U}^{2}=\mathbf{V}^{2}=\mathbf{W}^{2}=-\mathbf{I}_{4}, \mathbf{U V}=\mathbf{W}$, $\mathbf{V} \mathbf{U}=-\mathbf{W}, \mathbf{V W}=\mathbf{U}, \mathbf{W} \mathbf{V}=-\mathbf{U}, \mathbf{W} \mathbf{U}=\mathbf{V}$, and $\mathbf{U W}=-\mathbf{V} . \quad$ [2]
4. Verify that if \mathbf{U}, \mathbf{V}, and \mathbf{W} are the matrices you obtained in $\mathbf{3}$, and $\mathbf{B}=a \mathbf{I}_{4}+b \mathbf{U}+$ $c \mathbf{V}+d \mathbf{W}$ for scalars a, b, c, and d (not all 0), then \mathbf{B} is invertible and there are scalars p, q, r, and s such that $\mathbf{B}^{-1}=p \mathbf{I}_{4}+q \mathbf{U}+r \mathbf{V}+s \mathbf{W}$. [3]
