Mathematics 1350H - Linear algebra I: matrix algebra

TRENT UNIVERSITY, Summer 2015

Assignment #2
Due on Monday, 25 May, 2015.

Projection and Orthogonalization

The key to what follows is the following idea. Recall from $\S 1.2$ of the textbook that the component of a vector ${\bf v}$ parallel to a (non-zero) vector ${\bf u}$ is the *projection of* ${\bf v}$ *onto* ${\bf u}$:

 $\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$

Recall further that if you take away the component of \mathbf{v} which is parallel to \mathbf{u} away from \mathbf{v} , the component that is left is orthogonal to \mathbf{u} .

1. Suppose \mathbf{v} and $\mathbf{u} \neq \mathbf{0}$ are vectors of the same dimension. Verify that $\mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is orthogonal to \mathbf{u} . [2]

Hint: Use the dot product!

Now let $B = \left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}$ be a set of three vectors in \mathbb{R}^3 . We will modify this set of vectors to make it nicer in some respects.

- **2.** Use the idea in **1** to modify the second vector in B to make it orthogonal to the first vector in B. [2]
- **3.** Modify the third vector in B to make it orthogonal to both the first and second vectors in B. [2]
- **4.** Modify the first vector in B and your modified vectors from **2** and **3** to have length one. [2]
- 5. What might your final collection of modified vectors from 4 be good for? [2]