Mathematics 1350 H - Linear algebra I: matrix algebra

Trent University, Summer 2015
Assignment \#2
Due on Monday, 25 May, 2015.

Projection and Orthogonalization

The key to what follows is the following idea. Recall from $\S 1.2$ of the textbook that the component of a vector \mathbf{v} parallel to a (non-zero) vector \mathbf{u} is the projection of \mathbf{v} onto u:

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Recall further that if you take away the component of \mathbf{v} which is parallel to \mathbf{u} away from \mathbf{v}, the component that is left is orthogonal to \mathbf{u}.

1. Suppose \mathbf{v} and $\mathbf{u} \neq \mathbf{0}$ are vectors of the same dimension. Verify that $\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is orthogonal to \mathbf{u}. [2]

Hint: Use the dot product!
Now let $B=\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}$ be a set of three vectors in \mathbb{R}^{3}. We will modify this set of vectors to make it nicer in some respects.
2. Use the idea in $\mathbf{1}$ to modify the second vector in B to make it orthogonal to the first vector in B. [2]
3. Modify the third vector in B to make it orthogonal to both the first and second vectors in B. [2]
4. Modify the first vector in B and your modified vectors from $\mathbf{2}$ and $\mathbf{3}$ to have length one. [2]
5. What might your final collection of modified vectors from 4 be good for? [2]

