TRENT UNIVERSITY

MATH 1350H Test

3 June, 2014

Time: 60 minutes

Name:			
STUDENT NUMBER: .			
	Question	Mark	
	1		
	2		
	3		
	4		
	Bonus		

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

Total ____ /40

1. Do any two (2) of **a**-**c**. $[10 = 2 \times 5 \text{ each}]$

Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

- **a.** Find the angle θ between **u** and **v**.
- **b.** Determine whether the lines given by $\mathbf{x} = \mathbf{u} + s\mathbf{v}$ and $\mathbf{x} = \mathbf{v} + t\mathbf{w}$ intersect or not.
- $\mathbf{c.}\,$ Find a non-zero vector perpendicular to both \mathbf{u} and $\mathbf{v.}\,$

a. Find all the solutions, if any, of this system for one (1) of
$$\begin{cases} i. & k=1 \\ ii. & k=2 \end{cases}$$
. [8]

b. Use your answer to **a** to determine whether
$$\begin{bmatrix} 4 \\ 5 \\ 12 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ k \end{bmatrix} \right\}$$
. [2]

- **3.** Do any two (2) of \mathbf{a} - \mathbf{c} . [10 = 2 × 5 each]
- **a.** Show that if the $n \times n$ matrix **A** has an inverse and $c \neq 0$, then c**A** has an inverse.
- **b.** Find a vector-parametric equation for the plane x y + z = 3.
- **c.** Sketch the lines x + 2y = 2 and 4x 2y = 0 and determine the angle between them.

4. Find the inverse matrix of $\begin{bmatrix} 2 & 4 & 6 \\ 1 & 3 & 9 \\ 0 & 1 & 2 \end{bmatrix}$. [10]

[Total = 40]

Bonus. A chip truck sells fries, cans of pop, and sandwiches. Any order of fries costs as much as any other, and similarly for cans of pop and sandwiches, respectively. A buys two orders of fries, two cans of pop, and a sandwich, which costs \$10.00; B buys two orders of fries, a can of pop, and a sandwich, which costs \$8.50; C buys an order of fries, two cans of pop, and a sandwich, which costs \$8.00; and D buys two orders of fries, two cans of pop, and two sandwiches. What does D's purchase cost? |1|