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Trent University, Summer 2014

Solutions to Assignment #5
Determinants by way of Gauss-Jordan reduction

Given a square matrix A, we can compute a number called the determinant of A,
usually denoted by |A| or det(A), that gives a lot of information about A. For example,
|A| 6= 0 exactly when A−1 exists. One problem with the usual definition of determinants
[see §4.2 in the text], which works by reducing the determinant of an n × n matrix to
an alternating sum of determinants of n different (n − 1) × (n − 1) sub-matrices, is that
computing them this way is a lot of work unless A is a pretty small matrix or has a lot
of 0s. (Heck, it’s a pain even for 3 × 3 matrices with the usual definition, as we saw in
computing cross-products of vectors in R3.) In this assignment, we will be looking at a
method to compute the determinant of a matrix using the Gauss-Jordan method.

The determinant of an n× n matrix A satisfies the following rules:

i. The identity matrix has determinant equal to 1, i.e. |In| = 1.

ii. If you exchange the ith and jth row of A to get the matrix B, then |B| = −|A|.
iii. If you multiply the ith row of A by a constant c to get the matrix C, then
|C| = c|A|.

iv. If you add a multiple of any row of A to a different row of A to get the matrix
D, then |D| = |A|.

v. Taking the transpose of A doesn’t change the determinant. That is, |AT | = |A|.

If you really wanted to, by the way, you could actually use this collection of rules as the
definition of the determinant of a matrix. It’s pretty cumbersome as a definition, but it
does provide a much more efficient way to compute the determinant of even a modestly
large matrix. It also makes it easier to see why A is invertible if and only if |A| 6= 0: both
are equivalent to the matrix being reducible to In using the Gauss-Jordan method.

1. In both a and b use the Gauss-Jordan method to put the matrix A in reduced row-
echelon form, and then apply rules i – v to work out |A|.

a. A =

[
2 3
4 5

]
[2]

b. A =

 0 3 6
2 4 5
4 7 0

 [3]

Solutions. a. First, we apply the Gauss-Jordan method:[
2 3
4 5

]
1
2R1

=⇒

[
1 3

2
4 5

]
=⇒

R2 − 4R1

[
1 3

2
0 −1

]
=⇒

(−1)R2

[
1 3

2
0 1

]
R1 − 3

2R2

=⇒

[
1 0
0 1

]
Second, we check how the row operations involved changed the determinant of A. Note
that since we never exchanged rows, rule ii does not apply. Otherwise, we subtracted a
multiple of one row from another twice, which by rule iv does not change the determinant,
and multiplied a row by a constant twice, which by rule iii multiplies the determinant by
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that constant. Thus
(
1
2

)
(−1)|A| = |I2| = 1, the last equality being rule i . It follows that

|A| = 1

( 1
2 )(−1)

= −2.

Note that this answer agrees with that given by the formula for the determinant of a

2× 2 matrix, |A| =
∣∣∣∣ 2 3
4 5

∣∣∣∣ = 2 · 5− 3 · 4 = 10− 12 = −2. (As it should! :-) �

b. Again, we first apply the Gauss-Jordan algorithm to A: 0 3 6
2 4 5
4 7 0

 R1 ↔ R2

=⇒

 2 4 5
0 3 6
4 7 0

 1
2R1

=⇒

 1 2 5
2

0 3 6
4 7 0


=⇒

R3 − 4R1

 1 2 5
2

0 3 6
0 −1 −10

 =⇒
1
3R2

 1 2 5
2

0 1 2
0 −1 −10

 R1 − 2R2

=⇒
R3 + R− 2

 1 0 − 3
2

0 1 2
0 0 −8


=⇒
− 1

8R3

 1 0 − 3
2

0 1 2
0 0 1

 R1 + 3
2R3

R2 − 2R3

=⇒

 1 0 0
0 1 0
0 0 1


Now we check how the row operations involved changed the determinant of A. We swapped
rows once, which multiplied the determinant by −1 according to rule ii ; we multiplied
rows by a constant three times, each time changing the determinant by the same factor
according to rule iii ; and we added multiples of one row to other rows several times, which
did not change the determinant by rule iv . Thus (−1)

(
1
2

) (
1
3

) (
− 1

8

)
|A| = |I2| = 1, the

last equality being rule i . It follows that |A| = 1

(−1)( 1
2 )( 1

3 )(− 1
8 )

= 48. (You can check that

this agrees with the recursive definition of determinants, if you wish.) �

2. Use rules i – v to determine |A| if:

a. A = O =

[
0 0
0 0

]
. [1]

b. A has a row of zeros. [1]

c. A has two equal rows. [1]

Solutions. a. A trivial row operation gives it away:

[
0 0
0 0

]
0R1

=⇒

[
0 0
0 0

]
. By rule iii it

follows that |O| = 0|O| = 0. �

b. Same trick as in the solution to a above. Suppose row i of A is all zeros. Then A
⇒
0Ri

A,
and so by rule iii it follows that |A| = 0|A| = 0. �

c. Suppose rows i and j of A are the same. Then A
⇒

Ri−Rj
D, where boldD’s ith row is all

zeros, and so |D| = 0 by b above. By rule iv , however, subtracting one row from another
does not change the determinant, so |A| = |D| = 0. �

3. Rules ii – iv are true for the columns of A as well as the rows. Explain why. [2]

Solution. The columns of A are the rows of AT , and since |AT | = |A| by rule v , column
operations on A have the same effect as row operations on AT . It follows that rules ii –
iv are true for the columns of A. �
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