Mathematics 1350H – Linear algebra I: Matrix algebra

TRENT UNIVERSITY, Summer 2014

Solutions to Assignment #5 Determinants by way of Gauss-Jordan reduction

Given a square matrix \mathbf{A} , we can compute a number called the *determinant* of \mathbf{A} , usually denoted by $|\mathbf{A}|$ or det(\mathbf{A}), that gives a lot of information about \mathbf{A} . For example, $|\mathbf{A}| \neq 0$ exactly when \mathbf{A}^{-1} exists. One problem with the usual definition of determinants [see §4.2 in the text], which works by reducing the determinant of an $n \times n$ matrix to an alternating sum of determinants of n different $(n-1) \times (n-1)$ sub-matrices, is that computing them this way is a *lot* of work unless \mathbf{A} is a pretty small matrix or has a lot of 0s. (Heck, it's a pain even for 3×3 matrices with the usual definition, as we saw in computing cross-products of vectors in \mathbb{R}^3 .) In this assignment, we will be looking at a method to compute the determinant of a matrix using the Gauss-Jordan method.

The determinant of an $n \times n$ matrix **A** satisfies the following rules:

- *i.* The identity matrix has determinant equal to 1, *i.e.* $|\mathbf{I}_n| = 1$.
- *ii.* If you exchange the *i*th and *j*th row of **A** to get the matrix **B**, then $|\mathbf{B}| = -|\mathbf{A}|$.
- *iii.* If you multiply the *i*th row of **A** by a constant *c* to get the matrix **C**, then $|\mathbf{C}| = c|\mathbf{A}|$.
- *iv.* If you add a multiple of any row of **A** to a different row of **A** to get the matrix **D**, then $|\mathbf{D}| = |\mathbf{A}|$.
- v. Taking the transpose of A doesn't change the determinant. That is, $|\mathbf{A}^T| = |\mathbf{A}|$.

If you really wanted to, by the way, you could actually use this collection of rules as the definition of the determinant of a matrix. It's pretty cumbersome as a definition, but it does provide a much more efficient way to compute the determinant of even a modestly large matrix. It also makes it easier to see why **A** is invertible if and only if $|\mathbf{A}| \neq 0$: both are equivalent to the matrix being reducible to \mathbf{I}_n using the Gauss-Jordan method.

1. In both **a** and **b** use the Gauss-Jordan method to put the matrix **A** in reduced rowechelon form, and then apply rules i - v to work out $|\mathbf{A}|$.

a.
$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$$

b. $\mathbf{A} = \begin{bmatrix} 0 & 3 & 6 \\ 2 & 4 & 5 \\ 4 & 7 & 0 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$

SOLUTIONS. a. First, we apply the Gauss-Jordan method:

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \xrightarrow{\frac{1}{2}} \begin{bmatrix} 1 & \frac{3}{2} \\ 4 & 5 \end{bmatrix} \xrightarrow{\cong} \begin{bmatrix} 1 & \frac{3}{2} \\ R_2 - 4R_1 \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & -1 \end{bmatrix} \xrightarrow{\cong} \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 - \frac{3}{2}} R_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Second, we check how the row operations involved changed the determinant of \mathbf{A} . Note that since we never exchanged rows, rule *ii* does not apply. Otherwise, we subtracted a multiple of one row from another twice, which by rule *iv* does not change the determinant, and multiplied a row by a constant twice, which by rule *iii* multiplies the determinant by

that constant. Thus $\left(\frac{1}{2}\right)(-1)|\mathbf{A}| = |\mathbf{I}_2| = 1$, the last equality being rule *i*. It follows that $|\mathbf{A}| = \frac{1}{\left(\frac{1}{2}\right)(-1)} = -2$.

Note that this answer agrees with that given by the formula for the determinant of a 2×2 matrix, $|\mathbf{A}| = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2 \cdot 5 - 3 \cdot 4 = 10 - 12 = -2$. (As it should! :-) \Box

b. Again, we first apply the Gauss-Jordan algorithm to \mathbf{A} :

$$\begin{bmatrix} 0 & 3 & 6 \\ 2 & 4 & 5 \\ 4 & 7 & 0 \end{bmatrix} \stackrel{R_1 \leftrightarrow R_2}{\Longrightarrow} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 3 & 6 \\ 4 & 7 & 0 \end{bmatrix} \stackrel{\frac{1}{2}R_1}{\Longrightarrow} \begin{bmatrix} 1 & 2 & \frac{5}{2} \\ 0 & 3 & 6 \\ 4 & 7 & 0 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 2 & \frac{5}{2} \\ 0 & 3 & 6 \\ 0 & -1 & -10 \end{bmatrix} \stackrel{\frac{1}{3}R_2}{\Longrightarrow} \begin{bmatrix} 1 & 2 & \frac{5}{2} \\ 0 & 1 & 2 \\ 0 & -1 & -10 \end{bmatrix} \stackrel{R_1 - 2R_2}{\Longrightarrow} \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & 2 \\ R_3 + R - 2 \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & 2 \\ 0 & 0 & -8 \end{bmatrix}$$

$$\implies \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \stackrel{R_1 + \frac{3}{2}R_3}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Now we check how the row operations involved changed the determinant of **A**. We swapped rows once, which multiplied the determinant by -1 according to rule ii; we multiplied rows by a constant three times, each time changing the determinant by the same factor according to rule iii; and we added multiples of one row to other rows several times, which did not change the determinant by rule iv. Thus $(-1)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(-\frac{1}{8}\right)|\mathbf{A}| = |\mathbf{I}_2| = 1$, the last equality being rule i. It follows that $|\mathbf{A}| = \frac{1}{(-1)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(-\frac{1}{8}\right)} = 48$. (You can check that this agrees with the recursive definition of determinants, if you wish.)

SOLUTIONS. **a.** A trivial row operation gives it away: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \stackrel{OR_1}{\Longrightarrow} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. By rule *iii* it follows that $|\mathbf{O}| = 0|\mathbf{O}| = 0$. \Box

b. Same trick as in the solution to **a** above. Suppose row *i* of **A** is all zeros. Then $\mathbf{A}_{0R_i} \stackrel{\rightarrow}{\rightarrow} \mathbf{A}$, and so by rule *iii* it follows that $|\mathbf{A}| = 0|\mathbf{A}| = 0$. \Box

c. Suppose rows *i* and *j* of **A** are the same. Then $\mathbf{A}_{R_i-R_j} \stackrel{\Rightarrow}{\mathbf{D}}$, where *boldD*'s *i*th row is all zeros, and so $|\mathbf{D}| = 0$ by **b** above. By rule *iv*, however, subtracting one row from another does not change the determinant, so $|\mathbf{A}| = |\mathbf{D}| = 0$.

3. Rules ii - iv are true for the columns of **A** as well as the rows. Explain why. [2]

SOLUTION. The columns of \mathbf{A} are the rows of \mathbf{A}^T , and since $|\mathbf{A}^T| = |\mathbf{A}|$ by rule v, column operations on \mathbf{A} have the same effect as row operations on \mathbf{A}^T . It follows that rules ii - iv are true for the columns of \mathbf{A} .