Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2014

Solutions to Assignment \#5
Determinants by way of Gauss-Jordan reduction
Given a square matrix \mathbf{A}, we can compute a number called the determinant of \mathbf{A}, usually denoted by $|\mathbf{A}|$ or $\operatorname{det}(\mathbf{A})$, that gives a lot of information about A. For example, $|\mathbf{A}| \neq 0$ exactly when \mathbf{A}^{-1} exists. One problem with the usual definition of determinants [see $\S 4.2$ in the text], which works by reducing the determinant of an $n \times n$ matrix to an alternating sum of determinants of n different $(n-1) \times(n-1)$ sub-matrices, is that computing them this way is a lot of work unless \mathbf{A} is a pretty small matrix or has a lot of 0 s. (Heck, it's a pain even for 3×3 matrices with the usual definition, as we saw in computing cross-products of vectors in \mathbb{R}^{3}.) In this assignment, we will be looking at a method to compute the determinant of a matrix using the Gauss-Jordan method.

The determinant of an $n \times n$ matrix \mathbf{A} satisfies the following rules:
i. The identity matrix has determinant equal to 1 , i.e. $\left|\mathbf{I}_{n}\right|=1$.
ii. If you exchange the i th and j th row of \mathbf{A} to get the matrix \mathbf{B}, then $|\mathbf{B}|=-|\mathbf{A}|$.
iii. If you multiply the i th row of \mathbf{A} by a constant c to get the matrix \mathbf{C}, then $|\mathbf{C}|=c|\mathbf{A}|$.
$i v$. If you add a multiple of any row of \mathbf{A} to a different row of \mathbf{A} to get the matrix \mathbf{D}, then $|\mathbf{D}|=|\mathbf{A}|$.
v. Taking the transpose of \mathbf{A} doesn't change the determinant. That is, $\left|\mathbf{A}^{T}\right|=|\mathbf{A}|$.
If you really wanted to, by the way, you could actually use this collection of rules as the definition of the determinant of a matrix. It's pretty cumbersome as a definition, but it does provide a much more efficient way to compute the determinant of even a modestly large matrix. It also makes it easier to see why \mathbf{A} is invertible if and only if $|\mathbf{A}| \neq 0$: both are equivalent to the matrix being reducible to \mathbf{I}_{n} using the Gauss-Jordan method.

1. In both \mathbf{a} and \mathbf{b} use the Gauss-Jordan method to put the matrix \mathbf{A} in reduced rowechelon form, and then apply rules $i-v$ to work out $|\mathbf{A}|$.
a. $\mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right][2]$
b. $\mathbf{A}=\left[\begin{array}{lll}0 & 3 & 6 \\ 2 & 4 & 5 \\ 4 & 7 & 0\end{array}\right]$ [3]

Solutions. a. First, we apply the Gauss-Jordan method:

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \stackrel{\frac{1}{2} R_{1}}{\Longrightarrow}\left[\begin{array}{cc}
1 & \frac{3}{2} \\
4 & 5
\end{array}\right] \underset{R_{2}-4 R_{1}}{\Longrightarrow}\left[\begin{array}{cc}
1 & \frac{3}{2} \\
0 & -1
\end{array}\right] \underset{(-1) R_{2}}{\Longrightarrow}\left[\begin{array}{cc}
1 & \frac{3}{2} \\
0 & 1
\end{array}\right] \stackrel{R_{1}-\frac{3}{2} R_{2}}{\Longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Second, we check how the row operations involved changed the determinant of A. Note that since we never exchanged rows, rule $i i$ does not apply. Otherwise, we subtracted a multiple of one row from another twice, which by rule $i v$ does not change the determinant, and multiplied a row by a constant twice, which by rule $i i i$ multiplies the determinant by
that constant. Thus $\left(\frac{1}{2}\right)(-1)|\mathbf{A}|=\left|\mathbf{I}_{2}\right|=1$, the last equality being rule i. It follows that $|\mathbf{A}|=\frac{1}{\left(\frac{1}{2}\right)(-1)}=-2$.

Note that this answer agrees with that given by the formula for the determinant of a 2×2 matrix, $|\mathbf{A}|=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=2 \cdot 5-3 \cdot 4=10-12=-2$. (As it should! :-) \square
b. Again, we first apply the Gauss-Jordan algorithm to A:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 3 & 6 \\
2 & 4 & 5 \\
4 & 7 & 0
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{2}}{\Longrightarrow}\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 3 & 6 \\
4 & 7 & 0
\end{array}\right] \stackrel{\frac{1}{2} R_{1}}{\Longrightarrow}\left[\begin{array}{lll}
1 & 2 & \frac{5}{2} \\
0 & 3 & 6 \\
4 & 7 & 0
\end{array}\right]} \\
& \underset{R_{3}}{\Longrightarrow} 4 R_{1}\left[\begin{array}{ccc}
1 & 2 & \frac{5}{2} \\
0 & 3 & 6 \\
0 & -1 & -10
\end{array}\right] \underset{\frac{1}{3} R_{2}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & 2 & \frac{5}{2} \\
0 & 1 & 2 \\
0 & -1 & -10
\end{array}\right] \stackrel{R_{1}-2 R_{2}}{\Longrightarrow} \begin{array}{ccc}
\Longrightarrow \\
R_{3}+R-2
\end{array}\left[\begin{array}{ccc}
1 & 0 & -\frac{3}{2} \\
0 & 1 & 2 \\
0 & 0 & -8
\end{array}\right] \\
& \underset{-\frac{1}{8} R_{3}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -\frac{3}{2} \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] \stackrel{\left.\begin{array}{c}
R_{1}+\frac{3}{2} R_{3} \\
R_{2}-2 R_{3} \\
\Longrightarrow
\end{array}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], ~\right]}{\Longrightarrow}
\end{aligned}
$$

Now we check how the row operations involved changed the determinant of A. We swapped rows once, which multiplied the determinant by -1 according to rule $i i$; we multiplied rows by a constant three times, each time changing the determinant by the same factor according to rule $i i i$; and we added multiples of one row to other rows several times, which did not change the determinant by rule $i v$. Thus $(-1)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(-\frac{1}{8}\right)|\mathbf{A}|=\left|\mathbf{I}_{2}\right|=1$, the last equality being rule i. It follows that $|\mathbf{A}|=\frac{1}{(-1)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(-\frac{1}{8}\right)}=48$. (You can check that this agrees with the recursive definition of determinants, if you wish.)
2. Use rules $i-v$ to determine $|\mathbf{A}|$ if:
a. $\mathbf{A}=\mathbf{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \cdot[1]$
b. A has a row of zeros. [1]
c. A has two equal rows. [1]

Solutions. a. A trivial row operation gives it away: $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \xlongequal{0 R_{1}} \Longrightarrow\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. By rule $i i i$ it follows that $|\mathbf{O}|=0|\mathbf{O}|=0$.
b. Same trick as in the solution to a above. Suppose row i of \mathbf{A} is all zeros. Then $\mathbf{A}_{0 R_{i}}^{\Rightarrow} \mathbf{A}$, and so by rule $i i i$ it follows that $|\mathbf{A}|=0|\mathbf{A}|=0$.
c. Suppose rows i and j of \mathbf{A} are the same. Then $\mathbf{A}_{R_{i}-R_{j}}^{\Rightarrow} \mathbf{D}$, where boldD's i th row is all zeros, and so $|\mathbf{D}|=0$ by \mathbf{b} above. By rule $i v$, however, subtracting one row from another does not change the determinant, so $|\mathbf{A}|=|\mathbf{D}|=0$.
3. Rules $i i-i v$ are true for the columns of \mathbf{A} as well as the rows. Explain why. [2]

Solution. The columns of \mathbf{A} are the rows of \mathbf{A}^{T}, and since $\left|\mathbf{A}^{T}\right|=|\mathbf{A}|$ by rule v, column operations on \mathbf{A} have the same effect as row operations on \mathbf{A}^{T}. It follows that rules $i i$ $i v$ are true for the columns of \mathbf{A}.

