Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2014

Solutions to Assignment \#4 Linear algebra for non-linear equations?

Recall that the general equation of a circle of radius r centred at the point (p, q) is $(x-p)^{2}+(y-q)^{2}=r^{2}$, and that the general equation of a parabola with a vertical axis of symmetry is $y=a x^{2}+b x+c$. Consider the points $(5,1),(-2,0)$, and $(6,-6)$.

1. Find the equation of the (only!) circle which pass through the three given points. [5] Solution. The circle $(x-p)^{2}+(y-q)^{2}=r^{2}$ passes through the points $(5,1),(-2,0)$, and $(6,-6)$ if the coordinates of each of the points satisfy the equation of the circle. The first thing to do is to plug the (x, y)-coordinates of our three points into the equation for the circle and expand:

$$
\begin{aligned}
& r^{2}=(5-p)^{2}+(1-q)^{2}=25-10 p+p^{2}+1-2 q+q^{2}=p^{2}+q^{2}-10 p-2 q+26 \\
& r^{2}=(-2-p)^{2}+(0-q)^{2}=4+4 p+p^{2}+q^{2}=p^{2}+q^{2}+4 p+4 \\
& r^{2}=(6-p)^{2}+(-6-q)^{2}=36-12 p+p^{2}+36+12 q+q^{2}=p^{2}+q^{2}-12 p+12 q+72
\end{aligned}
$$

It follows that $r^{2}-p^{2}-q^{2}=-10 p-2 q+26=4 p+4=-12 p+12 q+72$, and hence that $-10 p-2 q+26=4 p+4,4 p+4=-12 p+12 q+72$, and $-12 p+12 q+72=-10 p-2 q+26$, which we rearrange a bit to get the system of linear equations

$$
\begin{aligned}
14 p+2 q & =22 \\
16 p-12 q & =68 \\
2 p-14 q & =46
\end{aligned}
$$

We solve this system of linear equations for p and q in the usual way:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
14 & 2 & 22 \\
16 & -12 & 68 \\
2 & -14 & 46
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{3}}{\Longrightarrow}\left[\begin{array}{cc|c}
2 & -14 & 46 \\
16 & -12 & 68 \\
14 & 2 & 22
\end{array}\right] \stackrel{\frac{1}{2} R_{1}}{\Longrightarrow}\left[\begin{array}{cc|c}
1 & -7 & 23 \\
16 & -12 & 68 \\
14 & 2 & 22
\end{array}\right]} \\
& \begin{array}{c}
\Longrightarrow \\
R_{2}-16 R_{1} \\
R_{3}
\end{array}-14 R_{1}\left[\begin{array}{cc|c}
1 & -7 & 23 \\
0 & 100 & -300 \\
0 & 100 & -300
\end{array}\right] \underset{100 \mid}{\Longrightarrow} R_{2}\left[\begin{array}{cc|c}
1 & -7 & 23 \\
0 & 1 & -3 \\
0 & 100 & -300
\end{array}\right] \underset{R_{3}-100 R_{2}}{\Longrightarrow} \begin{array}{c}
R_{1}+7 R_{2} \\
R_{3}
\end{array}\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Thus $p=2$ and $q=-3$. We can plug this, along with the (x, y)-coordinates of one of our three points, into the equation of a circle to compute r^{2} :

$$
r^{2}=(-2-2)^{2}+(0-(-3))^{2}=4^{2}+3^{2}=16+9=25
$$

The circle passing through the given points thus has centre $(2,-3)$ and radius $5=\sqrt{25}$, and its equation is $(x-2)^{2}+(y+3)^{2}=25$.
2. Find the equation(s) of (all) the parabola(s), if any, with a vertical axis of symmetry which pass through the three given points. [5]
Solution. The parabola with equation $y=a x^{2}+b x+c$ passes through the points $(5,1)$, $(-2,0)$, and $(6,-6)$ if the coordinates of each of the points satisfy the equation. Similarly to the solution to $\mathbf{1}$ above, we plug the (x, y)-coordinates of our three points into the equation for the parabola and expand:

$$
\begin{aligned}
1 & =a 5^{2}+b 5+c=25 a+5 b+c \\
0 & =a(-2)^{2}+b(-2)+c=4 a-2 b+c \\
-6 & =a 6^{2}+b 6+c=36 a+6 b+c
\end{aligned}
$$

This is a system of three linear equations in three unknowns, which we solve for a, b, and c in the usual way:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
25 & 5 & 1 & 1 \\
4 & -2 & 1 & 0 \\
36 & 6 & 1 & -6
\end{array}\right] \stackrel{R_{1}}{\Longrightarrow} \not R_{2}\left[\begin{array}{ccc|c}
4 & -2 & 1 & 0 \\
25 & 5 & 1 & 1 \\
36 & 6 & 1 & -6
\end{array}\right]} \\
& \left.\stackrel{\frac{1}{4} R_{1}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & -\frac{1}{2} & \frac{1}{4} & 0 \\
25 & 5 & 1 & 1 \\
36 & 6 & 1 & -6
\end{array}\right] \stackrel{\underset{2}{ }-25 R_{1}}{R_{2}-36 R_{1}} \begin{array}{ccc|c}
1 & -\frac{1}{2} & \frac{1}{4} & 0 \\
R_{3} & \frac{35}{2} & -\frac{21}{4} & 1 \\
0 & 24 & -8 & -6
\end{array}\right] \\
& R_{2} \not \Longrightarrow R_{3}\left[\begin{array}{ccc|c}
1 & -\frac{1}{2} & \frac{1}{4} & 0 \\
0 & 24 & -8 & -6 \\
0 & \frac{35}{2} & -\frac{21}{4} & 1
\end{array}\right] \underset{\frac{1}{24} R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & -\frac{1}{2} & \frac{1}{4} & 0 \\
0 & 1 & -\frac{1}{3} & -\frac{1}{4} \\
0 & \frac{35}{2} & -\frac{21}{4} & 1
\end{array}\right] \\
& \underset{R_{1}}{\stackrel{+}{2}} \underset{R_{3}}{\Longrightarrow} R_{2}\left[\begin{array}{ccc|c}
1 & 0 & \frac{1}{12} & -\frac{1}{8} \\
0 & 1 & -\frac{1}{3} & -\frac{1}{4} \\
0 & 0 & \frac{7}{12} & \frac{43}{8}
\end{array}\right] \underset{7}{7} R_{3}\left[\begin{array}{ccc|c}
1 & 0 & \frac{1}{12} & -\frac{1}{8} \\
0 & 1 & -\frac{1}{3} & -\frac{1}{4} \\
0 & 0 & 1 & \frac{129}{14}
\end{array}\right] \\
& \left.\begin{array}{c}
R_{1}-\frac{1}{12} R_{3} \\
R_{2}+\frac{1}{3} R_{3}
\end{array} \underset{l l l \mid c}{1} \begin{array}{lll|c}
\\
0 & 1 & 0 & -\frac{25}{28} \\
0 & 0 & 1 & \frac{79}{14}
\end{array}\right]
\end{aligned}
$$

Thus $a=-\frac{25}{28}, b=\frac{79}{28}$, and $c=\frac{129}{14}$, and so the equation of the parabola with vertical symmetry that passes through the given points is $y=-\frac{25}{28} x^{2}+\frac{79}{28} x+\frac{129}{14}$.

Note: In general, three points in a plane that are not all in a straight line determine a unique circle that passes through all three. This can be shown, among other ways, by a souped-up version of a correct method for doing 1.

