Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2014
 Solutions to Assignment \#3
 Quadratic nonsense

1. Find a 2×2 matrix $\mathbf{X}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with real entries such that $\mathbf{X}^{2}+2 \mathbf{X}=-5 \mathbf{I}_{2}$. [5]

Note: $\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the 2×2 identity matrix.
Solution. We will first solve the corresponding quadratic equation for numbers and then use that to help us find a solution to the given matrix equation.

It is pretty easy to solve the corresponding equation, $x^{2}+2 x=-5$, for numbers, although the answers involve complex numbers. We simply rearrange the equation into a form we can apply the quadratic formula to, $x^{2}+2 x+5=0$, and then apply the quadratic formula:

$$
x=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot 5}}{2 \cdot 1}=\frac{-2 \pm \sqrt{4-20}}{2}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 \sqrt{-1}}{2}=-1 \pm 2 i,
$$

where $i^{2}=1$. i is not a real number, to be sure, but it has its uses.
The 2×2 matrix that acts like 1 does in number systems is, of course, \mathbf{I}_{2}. To get a matrix that acts like i does for numbers, we will need a 2×2 matrix \mathbf{J} such that $\mathbf{J}^{2}=\mathbf{J J}=-\mathbf{I}_{2}$. It's not too hard to find such a matrix with a little tinkering. (See the note after this solution for a more general approach.) Here are several such:

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
1 & \sqrt{2} \\
-\sqrt{2} & -1
\end{array}\right] \quad\left[\begin{array}{cc}
2 & -\sqrt{5} \\
\sqrt{5} & -2
\end{array}\right] \quad\left[\begin{array}{cc}
-\sqrt{3} & 2 \\
-2 & \sqrt{3}
\end{array}\right]
$$

You can check for your self that each one of these satisfies $\mathbf{J}^{2}=\mathbf{I}_{2}$. You may assume, if you wish, that \mathbf{J} is a particular one of these in what follows, but any matrix \mathbf{J} such that $\mathbf{J}^{2}=\mathbf{J J}=-\mathbf{I}_{2}$ would do as well.

The matrix analogues, $\mathbf{X}=-\mathbf{I}_{2} \pm 2 \mathbf{J}$, of the solutions $a=-1 \pm 2 i$ to the corresponding quadratic equation for numbers are a solution to the given matrix equation. For example, let $\mathbf{X}=-\mathbf{I}_{2}+2 \mathbf{J}$; then:

$$
\begin{aligned}
\mathbf{X}^{2}+2 \mathbf{X} & =\left(-\mathbf{I}_{2}+2 \mathbf{J}\right)^{2}+2\left(-\mathbf{I}_{2}+2 \mathbf{J}\right) \\
& =\left(-\mathbf{I}_{2}\right)^{2}+\left(-\mathbf{I}_{2}\right)(2 \mathbf{J})+(2 \mathbf{J})\left(-\mathbf{I}_{2}\right)+(2 \mathbf{J})^{2}-2 \mathbf{I}_{2}+2(2 \mathbf{J}) \\
& =\mathbf{I}_{2}-2 \mathbf{J}-2 \mathbf{J}-4 \mathbf{I}_{2}-2 \mathbf{I}_{2}+4 \mathbf{J}=-5 \mathbf{I}_{2}
\end{aligned}
$$

A similar calculation shows that $\mathbf{X}=-\mathbf{I}_{2}-2 \mathbf{J}$ is also a solution. Note that the the plethora of possible matrices \mathbf{J} means that the given matrix equation has more than just two solutions.

Note. Here's a sketch of a more structured approach for finding matrices \mathbf{J} such that $\mathbf{J}^{2}=-\mathbf{I}_{2}$. If $\mathbf{J}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\mathbf{J}^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a^{2}+b c & a c+b d \\ a c+b d & d^{2}+b c\end{array}\right]$.

To have $\mathbf{J}^{2}=-\mathbf{I}_{2}$ thus requires that $a^{2}+b c=-1=d^{2}+b c$ and $a c+b d=0$. Observe first that it follows that $a^{2}=d^{2}$, and hence that $a= \pm d$. Second, if $b=0$ or $c=0$ (or both), we would have to have $a^{2}=d^{2}=-1$, which is impossible if a and d are real numbers; it follows that we must have $b \neq 0$ and $c \neq 0$. On the other hand, if $a=0$, and hence $d=0$, the only thing left to satisfy would be $b c=-1$. Hence, for example, if $a=d=0$ and $b=1$, we would have to have $c=-1$, and $\mathbf{J}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ would be a matrix such that $\mathbf{J}^{2}=-\mathbf{I}_{2}$. By setting some of $a-d$ to various values and trying to solve for the rest, we can get a lot of other matrices that do the job, too.
2. Is there a 2×2 matrix \mathbf{X} with real entries such that $\mathbf{X}^{2}+2 \mathbf{X}=-\mathbf{I}_{2}$, other than $\mathbf{X}=\mathbf{I}_{2}$? If so, find one; if not, explain why there isn't one. [5]
Solution. First, a small sanity check: \mathbf{I}_{2} is not a solution of $\mathbf{X}^{2}+2 \mathbf{X}=-\mathbf{I}_{2}$. Now, observe that $\mathbf{X}^{2}+2 \mathbf{X}=-\mathbf{I}_{2} \Leftrightarrow \mathbf{X}^{2}+2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{O} \Leftrightarrow\left(\mathbf{X}+\mathbf{I}_{2}\right)^{2}=\mathbf{O}$. If $\mathbf{X}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\left(\mathbf{X}+\mathbf{I}_{2}\right)^{2}=\left[\begin{array}{cc}a+1 & b \\ c & d+1\end{array}\right]^{2}=\left[\begin{array}{cc}(a+1)^{2}+b c & (a+1) b+c(d+1) \\ (a+1) b+c(d+1) & (d+1)^{2}+b c\end{array}\right]$, so we would have to have that $(a+1)^{2}+b c=0=(d+1)^{2}+b c$ and $(a+1) b+c(d+1)=a b+c d+b+c=0$.

If, say, $b=c=0$, then we'd have to have that $(a+1)^{2}=(d+1)^{2}=0$, which would require that $a+1=d+1=0$, and hence that $a=d=-1$. Thus $\mathbf{X}=-\mathbf{I}_{2} \neq \mathbf{I}_{2}$ is a solution to the given equation. This would be enough to answer the question given ...

More generally, note that we must have that $(a+1)^{2}=(d+1)^{2}$, so $a+1= \pm(d+1)$, and thus $a=d$ or $a=-d-2$.

If $a=d,(a+1) b+c(d+1)=0$ implies that $b+c=0$ (or $a=d=-1$, as above), and then $(a+1)^{2}+b c=0=(d+1)^{2}+b c$ implies that $b c=-(a+1)^{2}=-(d+1)^{2}$ as well. It is pretty easy to see that this will force $b=-c= \pm(a+1)$. For example, if we set $a=d=1$, then $b+c=0$ and $b c=-(1+1)^{2}=-4$. Thus $a=d=1, b=2$, and $c=-2$, and so $\mathbf{X}=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right] \neq \mathbf{I}_{2}$ is a solution.

If $a=-d-2$, then we still have to have that $b c=-(a+1)^{2}=-(d+1)^{2}$. However, $0=(a+1) b+c(d+1)=(-d-2+1) b+c(d+1)=-(d+1) b+c(d+1)=(d+1)(-b+c)$, so either $d=-1$ (and hence $a=-(-1)-2=-1$, too, which would force $b=0$ or $c=0$) or $b=c$. But then $b c=b^{2}=-(d+1)^{2}$, which is impossible with real numbers unless $d+1=0$, i.e. $d=-1$ (and hence that $a=-1$, too) and $b=c=0$. Thus this case does not give any obvious additional solutions.

