Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2014

Solutions to Assignment \#1
 Two classic puzzles

The two questions below are similar to problems posed in the Middle Ages, and may well go back farther than that.

1. Three men robbed a gentleman of a vase, containing 24 ounces of balsam. Whilst running away they met in a wood with a glass-seller, of whom in a great hurry they purchased three vessels. On reaching a place of safety they wished to divide the booty, but they found that their vessels contained 5,11 , and 13 ounces respectively. How could they divide the balsam into equal portions? (Explain in detail, please!) [5]

Solution. Here is the solution given in the source [1] from which I got both problems:
Problems like this can be worked out only by trial: there are several solutions, of which one is as follows.

The vessels can contain $\ldots . .$.	24 oz	13 oz	11 oz.	5 oz.	
Their contents originally are	$24 \ldots$	$13 \ldots$	$11 \ldots$	$5 \ldots$	
First, make their contents \ldots	$0 \ldots$	$8 \ldots$	$11 \ldots$	$5 \ldots$	
Second,	$"$	$"$	\ldots	$16 \ldots$	$8 \ldots$
Third,	$"$	$"$	\ldots	$3 \ldots$	$8 \ldots$
Fourth,	$"$	$"$	\ldots	$3 \ldots$	$8 \ldots$
Fifth,	$"$	$"$	\ldots	$3 \ldots$	$8 \ldots$
Sixth,	$"$	$"$	\ldots	$8 \ldots$	$8 \ldots$

A little effort should suffice to work out what pouring is done between containers at each step.
2. A game is played by two people, say A and B. A begins by mentioning some number not greater than six, B may add to that any number not greater than six, A may add to that again any number not greater than six, and so on. The winner is the first to reach fifty. Assuming both A and B play as well as possible, which one should win? Explain why in detail. [5]
Solution. Here is the solution given in the source [1] from which I got both problems:
\ldots Obviously, if A calls 43 , then whatever B adds to that, A can win next time. Similarly, if A calls $36, B$ cannot prevent A s calling 43 the next time. In this way it is clear that the key numbers are those forming the arithmetical progression $43,36,29,22,15,8,1$; and whoever plays first ought to win.

Similarly, if no number greater than m may be added at any one time, and n is the number to be called by the victor, then the key numbers will be those forming the arithmetical progression whose common difference is $m+1$ and whose smallest term is the remainder obtained by dividing n by $m+1$.

Again, a little reflection and/or experimentation should suffice to convince you just how this solution works.

Reference

1. Mathematical Recreations and Essays (Fourth Edition), W.W. Rouse Ball, MacMillan and Co., London, 1896. [The two problems and their solutions are on pages 16-17 of Project Gutenberg's electronic version of this book, for which see: http://www.gutenberg.org/ebooks/26839]
