Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2014
 Final Examination
 Friday, 20 June, 2014

Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Do parts I and II, and, if you wish, part III. Show all your work. If in doubt about something, ask!
Aids: Calculator; one $8.5^{\prime \prime} \times 11^{\prime \prime}$ or A4 aid sheet; no neuron limit.
Part I. Do all four (4) of 1-4.
[Subtotal $=64 / 100]$

1. Consider the following system of linear equations:

$$
\begin{aligned}
2 u+4 x & +6 z
\end{aligned}=0
$$

a. With as little work as possible (but which you should fully show!), determine whether this system has no solution, just one solution, or many solutions. [6]
b. Use your answer to a to determine if $\left\{\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}6 \\ 0 \\ 1 \\ 7\end{array}\right]\right\}$ is a linearly dependent or independent set of vectors. [4]
2. Consider the planes in \mathbb{R}^{3} given by the equations $x+y+z=4$ and $x+2 y+3 z=6$.
a. Find a parametric description of the line in which the two planes intersect. [5]
b. Find a vector parallel to both planes. [5]
c. Sketch the two planes and the line. [5]
3. Let $\mathbf{A}=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right] . \quad \begin{aligned} & \text { a. Compute } \mathbf{A}^{-1}, \text { if it exists. [10] } \\ & \text { b. Use your calculation for a to find }|\mathbf{A}| .[5] \\ & \text { c. What are the rank and nullity of } \mathbf{A} \text { ? Why? [2] } \\ & \text { d. Compute } \mathbf{A}^{T} .[2]\end{aligned}$
4. Consider the subspace $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{4}.

Do \mathbf{a} and one (1) of \mathbf{b} or \mathbf{c}.
a. Find a basis for W. [10]
b. Find an orthogonal basis for W. [10]
c. Find a matrix \mathbf{B} such that $W=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid \mathbf{B x}=\mathbf{0}\right\}$. [10]

Part II. Do any three (3) of 6-11.
[Subtotal $=36 / 100]$
6. Find all the eigenvalues of $\mathbf{B}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$, and a nonzero eigenvector for each eigenvalue. [12]
7. Determine whether each of the following is a subspace of \mathbb{R}^{2} or not. [12 $=3 \times 4$ each]
a. $U=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, 2 x=3 y\right\}$
b. $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\,(x+1)^{2}=(x-1)^{2}\right\}$
c. $W=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right]| | x-y \right\rvert\,=0\right\}$
8. Find an example of 2×2 matrices \mathbf{X} and \mathbf{Y} satisfying the equations $\mathbf{X}+\mathbf{Y}=\mathbf{I}_{2}$ and $\mathbf{X}-2 \mathbf{Y}=\mathbf{O}_{2}$, where \mathbf{I}_{2} and \mathbf{O}_{2} are the 2×2 identity and zero matrices, respectively. How many such matrices \mathbf{X} and \mathbf{Y} are there? Explain why. [12]
9. a. Suppose $\mathbf{w} \in \mathbb{R}^{n}$ is perpendicular to all of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k} \in \mathbb{R}^{n}$. Show that if $\mathbf{u} \in \operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}$, then \mathbf{w} and \mathbf{u} are also perpendicular. [8]
b. How large can a collection of vectors can one find in \mathbb{R}^{n} such that each is perpendicular to every other vector in the collection? Why? [4]
10. Suppose the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find the matrix $[T]$ such that $T(\mathbf{x})=[T] \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{2} .[12]$
11. Use the Gauss-Jordan method to find all the solutions, if any, of the system of equations given in question 1. [12]

$$
[\text { Total }=100]
$$

Part III. Bonus!

0. Write an original little poem about linear algebra or mathematics in general. [1]
-5. Give a creative explanation for the lack of a question $\mathbf{5}$ on this exam. [1]
