Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2014

Assignment \#5

Due on Tuesday, 17 June, 2014.

Determinants by way of Gauss-Jordan reduction

Given a square matrix \mathbf{A}, we can compute a number called the determinant of \mathbf{A}, usually denoted by $|\mathbf{A}|$ or $\operatorname{det}(\mathbf{A})$, that gives a lot of information about A. For example, $|\mathbf{A}| \neq 0$ exactly when \mathbf{A}^{-1} exists. One problem with the usual definition of determinants [see $\S 4.2$ in the text], which works by reducing the determinant of an $n \times n$ matrix to an alternating sum of determinants of n different $(n-1) \times(n-1)$ sub-matrices, is that computing them this way is a lot of work unless \mathbf{A} is a pretty small matrix or has a lot of 0 s. (Heck, it's a pain even for 3×3 matrices with the usual definition, as we saw in computing cross-products of vectors in \mathbb{R}^{3}.) In this assignment, we will be looking at a method to compute the determinant of a matrix using the Gauss-Jordan method.

The determinant of an $n \times n$ matrix \mathbf{A} satisfies the following rules:
i. The identity matrix has determinant equal to 1 , i.e. $\left|\mathbf{I}_{n}\right|=1$.
ii. If you exchange the i th and j th row of \mathbf{A} to get the matrix \mathbf{B}, then $|\mathbf{B}|=-|\mathbf{A}|$.
iii. If you multiply the i th row of \mathbf{A} by a constant c to get the matrix \mathbf{C}, then $|\mathbf{C}|=c|\mathbf{A}|$.
$i v$. If you add a multiple of any row of \mathbf{A} to a different row of \mathbf{A} to get the matrix \mathbf{D}, then $|\mathbf{D}|=|\mathbf{A}|$.
v. Taking the transpose of \mathbf{A} doesn't change the determinant. That is, $\left|\mathbf{A}^{T}\right|=|\mathbf{A}|$.
If you really wanted to, by the way, you could actually use this collection of rules as the definition of the determinant of a matrix. It's pretty cumbersome as a definition, but it does provide a much more efficient way to compute the determinant of even a modestly large matrix. It also makes it easier to see why \mathbf{A} is invertible if and only if $|\mathbf{A}| \neq 0$: both are equivalent to the matrix being reducible to \mathbf{I}_{n} using the Gauss-Jordan method.

1. In both \mathbf{a} and \mathbf{b} use the Gauss-Jordan method to put the matrix \mathbf{A} in reduced rowechelon form, and then apply rules $i-v$ to work out $|\mathbf{A}|$.
a. $\mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right][2]$
b. $\mathbf{A}=\left[\begin{array}{lll}0 & 3 & 6 \\ 2 & 4 & 5 \\ 4 & 7 & 0\end{array}\right][3]$
2. Use rules $i-v$ to determine $|\mathbf{A}|$ if:
a. $\mathbf{A}=\mathbf{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \cdot[1]$
b. A has a row of zeros. [1]
c. A has two equal rows. [1]
3. Rules $i i-i v$ are true for the columns of \mathbf{A} as well as the rows. Explain why. [2]
