Trent University

MATH 1350H Test
 3 June, 2013

Time: 50 minutes

Name:

Solutions
Now with some corrections!
Student Number: $\quad 2.718281$

Question Mark

Total

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Consider the line in \mathbb{R}^{3} given by the vector equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
a. Find two points on this line. [1]
b. Sketch this line. [2]
c. Find a vector perpendicular to this line. [3]
d. Find the angle between this line and the line given by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.[4]

Solutions. a. When $t=0,\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, and when $t=1,\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+1\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, so $(1,0,0)$ and $(1,1,1)$ are two points on the give line.
b. We plot the points from a and connect them:

c. $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is a vector in the direction of the line, so we need to find a vector $\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$ perpendicular to it. Since two vectors are perpendicular exactly when their dot product is zero, this amounts to finding some values for u, v, and w (not all 0) so that

$$
\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=0 u+1 v+1 w=v+w=0 .
$$

It's pretty easy to see that $\left[\begin{array}{c}u \\ v \\ w\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, for example, does the job.
d. (Sanity check: both lines have the same base point, namely $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, so asking for the angle between them is meaningful.) The angle θ between the two lines is the angle between their direction vectors, so $\cos (\theta)=\frac{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]}{\left\|\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\|\left\|\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\|}=\frac{0 \cdot 0+1 \cdot 1+1 \cdot 0}{\sqrt{0^{2}+1^{2}+1^{2}} \sqrt{0^{2}+1^{2}+0^{2}}}=\frac{1}{\sqrt{2}}$. Since we are looking for an angle between 0 and π radians, and $\cos (\theta)$ is $1-1$ on this domain, $\theta=\frac{\pi}{4}$.
2. Consider the following system of linear equations: $\begin{aligned} & x+y+z=3 \\ & x-y+z=1 \\ & x+3 y+z=k\end{aligned}$
a. Find the solution(s), if any, of this system of equations if $k=2$. [5]
b. Find the solution(s), if any, of this system of equations if $k=5$. [5]

Solutions. To save some overall effort, we'll apply Gauss-Jordan reduction to the given system with the generic k and then sub in the given values of k and see what happens.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
1 & -1 & 1 & 1 \\
1 & 3 & 1 & k
\end{array}\right] \stackrel{R_{2}-R_{1}}{R_{3}-R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -2 & 0 & -2 \\
0 & 2 & 0 & k-3
\end{array}\right] } \\
\underset{-\frac{1}{2} R_{2}}{\Longrightarrow} & {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 0 & 1 \\
0 & 2 & 0 & k-3
\end{array}\right] \begin{array}{|c}
R_{1}-R_{2} \\
R_{3}-2 R_{2}
\end{array}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & k-5
\end{array}\right] }
\end{aligned}
$$

Note that the final matrix is in row-reduced echelon form, so we can go no farther.
a. If $k=2$, the right-hand side entry in the last row is $2-5=-3$, so the line represents the equation $0=0 x+0 y+0 w=-3$, which is impossible. It follows that there are no solutions to the given system of equations if $k=2$.
b. If $k=5$, the right-hand side entry of the last row is $5-5=0$, which means that the third equation represented redundant information. What is left only tells us that $x+z=2$ and $y=1$. Since z can be anything, we have infinitely many solutions: if t is a parameter and we set $z=t=0+t$, then $y=1+0 t$ and $x=2-z=2-t$. The set of all solutions is therefore the line in \mathbb{R}^{3} given by the vector-parametric equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] .
$$

3. Do any two (2) of a-c. $[10=2 \times 5$ each]
a. Find a linear equation for the plane given by the vector-parametric equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right] .
$$

b. Find a vector-parametric equation for the plane $2 x-y+z=2$.
c. Find the point(s) of intersection, if any, of the lines in \mathbb{R}^{2} given by $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $x+y=-1$, respectively.
Solutions. a. We need to find a vector normal (i.e. perpendicular) to the plane; its entries will serve as the coefficients of the linear equation. The vectors $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]$ are both parallel to the plane, so their cross-product will be normal to it.

$$
\begin{aligned}
{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \times\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right] } & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
2 & 0 & -1
\end{array}\right|=+\left|\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 1 \\
2 & 0
\end{array}\right| \mathbf{k} \\
& =[1 \cdot(-1)-0 \cdot 1] \mathbf{i}-[1 \cdot(-1)-2 \cdot 1] \mathbf{j}+[1 \cdot 0-2 \cdot 1] \mathbf{k} \\
& =-\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}=\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]
\end{aligned}
$$

Thus the plane has a linear equation of the form $-x+3 y-2 z=d$. To compute d, we plug in the coordinates of the base point of the plane in the given parametric respresentation for x, y, and $z: d=-1(0)+3(1)-2(0)=3$. A linear equation for the given plane is therefore $-x+3 y-2 z=3$.
b. We need to find a point on the plane and two vectors parallel to it. We will do so by first finding three points in the plane by setting two of x, y, and z to 0 at a time and solving for the third:

$$
\begin{aligned}
& y=z=0 \Longrightarrow 2 x-0+0=2 \Longrightarrow x=1 \\
& x=z=0 \Longrightarrow 2 \cdot 0-y+0=2 \Longrightarrow y=-2 \\
& x=y=0 \Longrightarrow 2 \cdot 0-0+z=2 \Longrightarrow z=2
\end{aligned}
$$

Thus $(1,0,0),(0,-2,0)$, and $(0,0,2)$ are three points on the plane. We will use $(1,0,0)$ as the base point, and find the vectors we need by computing the vectors that take us from the base point to the other two points:

$$
\left[\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] .
$$

(Note that these two vectors are clearly not multiples of one another. If they were, we'd have to try harder to get a plane.) Thus a vector-parametric equation for the given plane is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
-2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] .
$$

3
c. We'll plug the expressions for x and y from the line given parametrically into the linear equation for the other line and try to solve for t :
$-1=x+y=(0+1 t)+(1+1 t)=1+2 t \quad \Longrightarrow \quad 2 t=-1-1=-2 \quad \Longrightarrow \quad t=-2 / 2=-1$
Plugging $t=-1$ into the parametric reprsentation gives us $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]-1\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$. Thus the point $(-1,0)$ is on both lines. (Note that it does really satisfy $x+y=-1$.)
4. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Compute $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 2\end{array}\right]$.
b. If $\mathbf{A}^{T} \mathbf{B}=\mathbf{I}_{41}$ for some matrices \mathbf{A} and \mathbf{B}, what is $\mathbf{B}^{T} \mathbf{A}$?
c. If $\mathbf{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}6 \\ 6\end{array}\right]$, find the vector $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ such that $\mathbf{A x}=\mathbf{b}$.

SOLUTIONS. a. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 2\end{array}\right]=\left[\begin{array}{llll}1 \cdot 1+2 \cdot 3 & 1 \cdot 2+2 \cdot 2 & 1 \cdot 3+2 \cdot 2 \\ 3 \cdot 1+4 \cdot 3 & 3 \cdot 2+4 \cdot 2 & 3 \cdot 3+4 \cdot 2 \\ 5 \cdot 1+6 \cdot 3 & 5 \cdot 2+6 \cdot 2 & 5 \cdot 3+6 \cdot 2\end{array}\right]=\left[\begin{array}{ccc}7 & 6 & 7 \\ 15 & 14 & 17 \\ 23 & 22 & 27\end{array}\right]$
b. Note that $\mathbf{I}_{41}^{T}=\mathbf{I}_{41}$ and $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$. It follows that

$$
\mathbf{B}^{T} \mathbf{A}=\mathbf{B}^{T}\left(\mathbf{A}^{T}\right)^{T}=\left(\mathbf{A}^{T} \mathbf{B}\right)^{T}=\left(\mathbf{I}_{41}\right)^{T}=\mathbf{I}_{41}^{T}=\mathbf{I}_{41}
$$

c. Since

$$
\left[\begin{array}{l}
6 \\
6
\end{array}\right]=\mathbf{b}=\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x+y \\
x+2 y
\end{array}\right]
$$

the problem boils down to solving the two linear equations $2 x+y=6$ and $x+2 y=6$. Here goes:

$$
\begin{aligned}
{\left[\begin{array}{ll|l}
2 & 1 & 6 \\
1 & 2 & 6
\end{array}\right] \stackrel{R_{1}}{ } } & \Longleftrightarrow R_{2}\left[\begin{array}{ll|l}
1 & 2 & 6 \\
2 & 1 & 6
\end{array}\right] \underset{2}{ } \Longrightarrow \\
& \Longrightarrow \\
& -\frac{1}{3} R_{2}
\end{aligned}\left[\begin{array}{ll|l}
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right] \stackrel{R_{1}}{R_{1}-2 R_{2}}\left[\begin{array}{cc|c}
1 & 2 & 6 \\
0 & -3 & 0 \\
\hline & 2 \\
0 & 1 & 2
\end{array}\right]
$$

It follows that $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.

$$
[\text { Total }=40]
$$

