Mathematics 1350H – Linear algebra I: Matrix algebra TRENT UNIVERSITY, Summer 2013

MATH 1350H Test

3 June, 2013

Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Consider the line in \mathbb{R}^3 given by the vector equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

- **a.** Find two points on this line. [1]
- **b.** Sketch this line. [2]
- c. Find a vector perpendicular to this line. [3]

d. Find the angle between this line and the line given by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. [4]

- 2. Consider the following system of linear equations: $\begin{array}{rcl}
 x &+ y &+ z &= 3\\
 x &- y &+ z &= 1\\
 x &+ 3y &+ z &= k
 \end{array}$
- **a.** Find the solution(s), if any, of this system of equations if k = 2. [5]
- **b.** Find the solution(s), if any, of this system of equations if k = 5. [5]
- **3.** Do any two (2) of \mathbf{a} - \mathbf{c} . $[10 = 2 \times 5 \text{ each}]$
- a. Find a linear equation for the plane given by the vector-parametric equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}.$$

b. Find a vector-parametric equation for the plane 2x - y + z = 2.

- **c.** Find the point(s) of intersection, if any, of the lines in \mathbb{R}^2 given by $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and x + y = -1, respectively.
- 4. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10 = 2 \times 5 \text{ each}]$
- **a.** Compute $\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \end{bmatrix}$.
- **b.** If $\mathbf{A}^T \mathbf{B} = \mathbf{I}_{41}$ for some matrices **A** and **B**, what is $\mathbf{B}^T \mathbf{A}$?
- **c.** If $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$, find the vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$. [Total = 40]