Mathematics 1350 H - Linear algebra I: Matrix algebra
 Trent University, Summer 2013

MATH 1350H Test

3 June, 2013
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Consider the line in \mathbb{R}^{3} given by the vector equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
a. Find two points on this line. [1]
b. Sketch this line. [2]
c. Find a vector perpendicular to this line. [3]
d. Find the angle between this line and the line given by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.[4]
2. Consider the following system of linear equations: $-x+y+z=3$ $x-y+z=1$ $x+3 y+z=k$
a. Find the solution(s), if any, of this system of equations if $k=2$. [5]
b. Find the solution(s), if any, of this system of equations if $k=5$. [5]
3. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Find a linear equation for the plane given by the vector-parametric equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right] .
$$

b. Find a vector-parametric equation for the plane $2 x-y+z=2$.
c. Find the point(s) of intersection, if any, of the lines in \mathbb{R}^{2} given by $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $x+y=-1$, respectively.
4. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Compute $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 2\end{array}\right]$.
b. If $\mathbf{A}^{T} \mathbf{B}=\mathbf{I}_{41}$ for some matrices \mathbf{A} and \mathbf{B}, what is $\mathbf{B}^{T} \mathbf{A}$?
c. If $\mathbf{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}6 \\ 6\end{array}\right]$, find the vector $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ such that $\mathbf{A} \mathbf{x}=\mathbf{b}$.

$$
[\text { Total }=40]
$$

