
Mathematics 1350H – Linear algebra I: Matrix algebra

Solutions to Assignment #4

Determinants the Gauss-Jordan way

Given a square matrix A, we can compute a number called the determinant of A,
usually denoted by |A| or det(A), that gives a lot of information about A. For example,
|A| 6= 0 exactly when A−1 exists. One problem with the usual definition of determinants
– which works by reducing the determinant of an n × n matrix to a weighted sum of n
determinants of (n − 1) × (n − 1) matrices - is that computing them this way is a lot of
work unless A is a pretty small matrix. (Heck, it’s a pain even for 3 × 3 matrices with
the usual definition . . . ) Here are some facts which let you compute the determinant of a
matrix using the Gauss-Jordan method:

The determinant of an n× n matrix A satisfies the following rules:

i. The identity matrix has determinant equal to 1, i.e. |In| = 1.

ii. If you exchange the ith and jth row of A to get the matrix B, then |B| = −|A|.
iii. If you multiply the ith row of A by a constant c to get the matrix C, then
|C| = c|A|.

iv. If you add a multiple of any row of A to a different row of A to get the matrix
D, then |D| = |A|. (In general, if you add any row vector r to the ith row of A
to get the matrix D, then |D| = |A|+ |Ai,r|, where Ai,r is the matrix A with its
ith row replaced by r.)

v. Taking the transpose of A doesn’t change the determinant. That is, |AT | = |A|.
If you really wanted to, by the way, you could actually use this collection of rules as the
definition of the determinant of a matrix. It’s pretty cumbersome as a definition, but it
does provide a much more efficient way to compute the determinant of even a modestly
large matrix.

1. Use rules i – v , as well as 1 and 2, to compute |A| if:

a. A has a column or a row of zeros. [1.5]

b. A has two equal columns or two equal rows. [1.5]

c. A =

[
3 4
5 6

]
. [2]

Solutions. a. Suppose A is an n× n matrix whose ith row, call it ri, is all zeros. Note
that in this case ri = 0ri, so, by rule iii , |A| = 0|A| = 0.

If A has a column of zeros instead, then AT must have a row of zeros, so |A| = |AT | =
0, by the above and rule v . �

b. Suppose A is a matrix whose ith and jth rows are the same (with i 6= j, of course).
Then A =⇒

Ri↔Rj

A, so, by rule ii , |A| = −|A|. The only number which is equal to its own

negative is 0, so it must be the case that |A| = 0. �

c. We’ll put A in row-reduced echelon form and then figure out |A| by applying the rules.[
3 4
5 6

]
1
3R1

=⇒

[
1 4

3
5 6

]
=⇒

R2 − 5R1

[
1 4

3
0 − 2

3

]
=⇒
− 3

2R2

[
1 4

3
0 1

]
R1 − 4

3R2

=⇒

[
1 0
0 1

]
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The final, row-reduced, matrix is just I2, which has determinant 1 by rule i . It was

obtained from

[
1 4

3
0 1

]
by subtracting a multiple of one row from another, which does

not change the determinant by rule iv , so

[
1 4

3
0 1

]
also has determinant 1. This matrix,

in turn, was obtained from

[
1 4

3
0 − 2

3

]
by multiplying a row by − 3

2 , which changes the

determinant by a factor of − 3
2 by rule iii , i.e. 1 =

∣∣∣∣[ 1 4
3

0 1

]∣∣∣∣ = − 3
2

∣∣∣∣[ 1 4
3

0 − 2
3

]∣∣∣∣. It

follows that

∣∣∣∣[ 1 4
3

0 − 2
3

]∣∣∣∣ = 1 ÷
(
− 3

2

)
= − 2

3 . Since

[
1 4

3
0 − 2

3

]
was obtained from

[
1 4

3
5 6

]
by subtracting a multiple of one row from another, rule iv tells us that

∣∣∣∣[ 1 4
3

5 6

]∣∣∣∣ = − 2
3

too.

[
1 4

3
5 6

]
was obtained from our original matrix A by multiplying a row by 1

3 , so

− 2
3 =

∣∣∣∣[ 1 4
3

5 6

]∣∣∣∣ = 1
3 |A| by rule iii . Thus |A| =

(
− 2

3

)
÷ 1

3 = −2. [Whew!] �

2. Rules ii – iv are true for the columns of A as well as the rows. Why? [2]

Solution. Rule v is the reason1. Applying the operations mentioned in rules ii – iv to
the columns of A corresponds to applying them to the rows of AT . Rule v tells us that
|B| = |BT | for any matrix B, so the effect on |A| of column operations on A is exactly
the same as the effect on |AT | of the corresponding row operations on AT . Hence rules ii
– iv work for columns as well as rows. �

3. Use the Gauss-Jordan method to put the matrix A =

 0 1 2
3 4 5
6 7 0

 in reduced row-

echelon form. Apply what you have learned above to use this computation to deter-
mine |A|. [3]

Solution. We’ll use the same method as for 1c above, though we won’t be quite so
painstaking in tracing how the determinant changes during the computation. First, the
full Gauss-Jordan:  0 1 2

3 4 5
6 7 0

 R1 ↔ R2

=⇒

 3 4 5
0 1 2
6 7 0

 1
3R1

=⇒

 1 4
3

5
3

0 1 2
6 7 0


=⇒

R3 − 6R1

 1 4
3

5
3

0 1 2
0 −1 −10

 R1 − 4
3R2

=⇒
R3 + R2

 1 0 −1
0 1 2
0 0 −8

 =⇒
− 1

8R3

 1 0 −1
0 1 2
0 0 1


1 But only when rows are not in season! [With apologies to Tom Lehrer.]
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R1 + R3

R2 − 2R3

=⇒

 1 0 0
0 1 0
0 0 1


The row-reduced matrix has determinant 1 by rule i . The only row operations which
changed the determinant were the swap of two rows and the multiplication of rows by 1

3
and − 1

8 , repectively. It follows that
(
− 1

8

) (
1
3

)
(−1)|A| = 1, so it must be the case that

|A| = 1÷
(
− 1

8

) (
1
3

)
(−1) = 24. �

Bonus. Assuming the general part of rule iv (the part in parentheses) is true, show that
the particular part of rule iv (the part not in parentheses) must be true. You
may use the other rules as well. [2]

Solution. Suppose we obtain E by adding c times row i of A to row j of A. (That
is, A =⇒

Rj+cRi

E.) Suppose C is the matrix A with row j replaced by c times row i, and

B is the matrix A with row j replaced by row i. Then |E| = |A| + |C| (by rule iv) =
|A|+ c|B| (by rule iii). Since |B| = 0 by 1b, it follows that |E| = |A|. �
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