Mathematics 1350H — Linear algebra I: Matrix algebra
Solutions to Assignment #4

Determinants the Gauss-Jordan way

Given a square matrix A, we can compute a number called the determinant of A,
usually denoted by |A| or det(A), that gives a lot of information about A. For example,
|A| # 0 exactly when A1 exists. One problem with the usual definition of determinants
— which works by reducing the determinant of an n x n matrix to a weighted sum of n
determinants of (n — 1) x (n — 1) matrices - is that computing them this way is a lot of
work unless A is a pretty small matrix. (Heck, it’s a pain even for 3 x 3 matrices with
the usual definition ... ) Here are some facts which let you compute the determinant of a
matrix using the Gauss-Jordan method:

The determinant of an n x n matrix A satisfies the following rules:

i. The identity matrix has determinant equal to 1, i.e. |L,| = 1.

ii. If you exchange the ith and jth row of A to get the matrix B, then |B| = —|A].
1i1. If you multiply the ith row of A by a constant ¢ to get the matrix C, then
|C| = c|A].

iv. If you add a multiple of any row of A to a different row of A to get the matrix
D, then |D| = |A|. (In general, if you add any row vector r to the ith row of A
to get the matrix D, then |D| = |A|+ |A; |, where A, ; is the matrix A with its
ith row replaced by r.)

v. Taking the transpose of A doesn’t change the determinant. That is, |[AT| = |A|.
If you really wanted to, by the way, you could actually use this collection of rules as the
definition of the determinant of a matrix. It’s pretty cumbersome as a definition, but it

does provide a much more efficient way to compute the determinant of even a modestly
large matrix.

1. Use rules i — v ;as-well-asI-and-2;- to compute |A] if:
a. A has a column or a row of zeros. [1.5]
b. A has two equal columns or two equal rows. [1.5/
3 4
c. A= {5 6} [2]

SOLUTIONS. a. Suppose A is an n X n matrix whose ¢th row, call it r;, is all zeros. Note
that in this case r; = Or;, so, by rule i, |A| = 0|A| = 0.
If A has a column of zeros instead, then AT must have a row of zeros, so |A| = |AT| =
0, by the above and rule v. [
b. Suppose A is a matrix whose ith and jth rows are the same (with ¢ # j, of course).
Then A el A, so, by rule i, |A| = —|A|. The only number which is equal to its own
i J

negative is 0, so it must be the case that |[A| = 0. O
c. We'll put A in row-reduced echelon form and then figure out |A| by applying the rules.

3 43R [1 3] = [1 5] = [1 3] Ri—3R[1 0
5 6] = |5 6] Ry—5R; [0 —2| —3R, |0 1 — |0 1
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The final, row-reduced, matrix is just I, which has determinant 1 by rule i. It was
4

obtained from [ g} by subtracting a multiple of one row from another, which does

0 1
1 4
not change the determinant by rule v, so [ 0 %1 also has determinant 1. This matrix,
4
in turn, was obtained from 0 39 | by multiplying a row by —%, which changes the

bt

4 4
determinant by a factor of —% by rule i, i.e. 1 = H(l) %H = —% B _32] ’ It
1 3 1 2 1
follows that {0 3, H =1+ (—%) = —%. Since [O 3, | was obtained from {5
3 3 ‘

by subtracting a multiple of one row from another, rule v tells us that ’ {

too.

4
% was obtained from our original matrix A by multiplying a row by %, SO

1 — 2 [Whew!] O

Wl

1
5
1 3 1 5
- ‘ [5 é” = §|A| by rule 7. Thus |A| = (_g) -

2. Rules 4 — v are true for the columns of A as well as the rows. Why? [2/

SOLUTION. Rule v is the reason'. Applying the operations mentioned in rules # — v to
the columns of A corresponds to applying them to the rows of AT. Rule v tells us that
|B| = |BT| for any matrix B, so the effect on |A| of column operations on A is exactly
the same as the effect on |AT| of the corresponding row operations on AT. Hence rules ii
— 1w work for columns as well as rows. B

EN NG

0 2

3. Use the Gauss-Jordan method to put the matrix A = |3 5| in reduced row-
6 0
t

echelon form. Apply what you have learned above to use this computation to deter-
mine |A[. [3]

SOLUTION. We’ll use the same method as for 1c above, though we won’t be quite so
painstaking in tracing how the determinant changes during the computation. First, the
full Gauss-Jordan:

[0 1 2] Ry« Ry [3 4 5] iR [1 5 2

3 45 = 01 2= |01 2

6 7 0 6 7 0 6 7 0

(1 3 2 | Ri—-3R[1 0 -1 1 0 -1
= 0o 1 2 = 01 2| = [0 1 2
R3—6R; |0 -1 —10] R3+Ry [0 0 —8] —gR3 [0 O 1

L' But only when rows are not in season! [With apologies to Tom Lehrer.]
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The row-reduced matrix has determinant 1 by rule 7. The only row operations which
changed the determinant were the swap of two rows and the multiplication of rows by %
and —£, repectively. It follows that (—3) (3) (—=1)|A| = 1, so it must be the case that

Al=1+(-3)(3)(-1)=24. 1

Bonus. Assuming the general part of rule v (the part in parentheses) is true, show that
the particular part of rule v (the part not in parentheses) must be true. You
may use the other rules as well. [2/

SOLUTION. Suppose we obtain E by adding ¢ times row ¢ of A to row j of A. (That

is, A R:+>R E.) Suppose C is the matrix A with row j replaced by ¢ times row i, and
jteRi

B is the matrix A with row j replaced by row i. Then |E| = |A| + |C| (by rule iv) =
|A| + ¢|B| (by rule ). Since |B| =0 by 1b, it follows that |[E| = |A|. B



