Mathematics 1350H - Linear algebra I: Matrix algebra

Solutions to Assignment \#4

Determinants the Gauss-Jordan way

Given a square matrix \mathbf{A}, we can compute a number called the determinant of \mathbf{A}, usually denoted by $|\mathbf{A}|$ or $\operatorname{det}(\mathbf{A})$, that gives a lot of information about \mathbf{A}. For example, $|\mathbf{A}| \neq 0$ exactly when \mathbf{A}^{-1} exists. One problem with the usual definition of determinants - which works by reducing the determinant of an $n \times n$ matrix to a weighted sum of n determinants of $(n-1) \times(n-1)$ matrices - is that computing them this way is a lot of work unless \mathbf{A} is a pretty small matrix. (Heck, it's a pain even for 3×3 matrices with the usual definition ...) Here are some facts which let you compute the determinant of a matrix using the Gauss-Jordan method:

The determinant of an $n \times n$ matrix \mathbf{A} satisfies the following rules:
i. The identity matrix has determinant equal to 1 , i.e. $\left|\mathbf{I}_{n}\right|=1$.
i. If you exchange the i th and j th row of \mathbf{A} to get the matrix \mathbf{B}, then $|\mathbf{B}|=-|\mathbf{A}|$.
iii. If you multiply the i th row of \mathbf{A} by a constant c to get the matrix \mathbf{C}, then $|\mathbf{C}|=c|\mathbf{A}|$.
$i v$. If you add a multiple of any row of \mathbf{A} to a different row of \mathbf{A} to get the matrix \mathbf{D}, then $|\mathbf{D}|=|\mathbf{A}|$. (In general, if you add any row vector \mathbf{r} to the i th row of \mathbf{A} to get the matrix \mathbf{D}, then $|\mathbf{D}|=|\mathbf{A}|+\left|\mathbf{A}_{i, \mathbf{r}}\right|$, where $\mathbf{A}_{i, \mathbf{r}}$ is the matrix \mathbf{A} with its i th row replaced by \mathbf{r}.)
v. Taking the transpose of \mathbf{A} doesn't change the determinant. That is, $\left|\mathbf{A}^{T}\right|=|\mathbf{A}|$.
If you really wanted to, by the way, you could actually use this collection of rules as the definition of the determinant of a matrix. It's pretty cumbersome as a definition, but it does provide a much more efficient way to compute the determinant of even a modestly large matrix.

1. Use rules $i-v$, as well as $\mathbf{1}$ and $\mathbf{2}$, to compute $|\mathbf{A}|$ if:
a. A has a column or a row of zeros. [1.5]
b. A has two equal columns or two equal rows. [1.5]
c. $\mathbf{A}=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] \cdot[2]$

Solutions. a. Suppose \mathbf{A} is an $n \times n$ matrix whose i th row, call it \mathbf{r}_{i}, is all zeros. Note that in this case $\mathbf{r}_{i}=0 \mathbf{r}_{i}$, so, by rule $i i i,|\mathbf{A}|=0|\mathbf{A}|=0$.

If \mathbf{A} has a column of zeros instead, then \mathbf{A}^{T} must have a row of zeros, so $|\mathbf{A}|=\left|\mathbf{A}^{T}\right|=$ 0 , by the above and rule v.
b. Suppose \mathbf{A} is a matrix whose i th and j th rows are the same (with $i \neq j$, of course). Then $\mathbf{A} \underset{R_{i} \leftrightarrow R_{j}}{\longrightarrow} \mathbf{A}$, so, by rule $i i,|\mathbf{A}|=-|\mathbf{A}|$. The only number which is equal to its own negative is 0 , so it must be the case that $|\mathbf{A}|=0$.
c. We'll put \mathbf{A} in row-reduced echelon form and then figure out $|\mathbf{A}|$ by applying the rules.

$$
\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right] \stackrel{\frac{1}{3} R_{1}}{\Longrightarrow}\left[\begin{array}{cc}
1 & \frac{4}{3} \\
5 & 6
\end{array}\right] \underset{2}{\Longrightarrow} R_{2}-5 R_{1}\left[\begin{array}{cc}
1 & \frac{4}{3} \\
0 & -\frac{2}{3}
\end{array}\right] \underset{-\frac{3}{2} R_{2}}{\Longrightarrow}\left[\begin{array}{ll}
1 & \frac{4}{3} \\
0 & 1
\end{array}\right] \stackrel{R_{1}-\frac{4}{3} R_{2}}{\Longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The final, row-reduced, matrix is just \mathbf{I}_{2}, which has determinant 1 by rule i. It was obtained from $\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & 1\end{array}\right]$ by subtracting a multiple of one row from another, which does not change the determinant by rule $i v$, so $\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & 1\end{array}\right]$ also has determinant 1 . This matrix, in turn, was obtained from $\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & -\frac{2}{3}\end{array}\right]$ by multiplying a row by $-\frac{3}{2}$, which changes the determinant by a factor of $-\frac{3}{2}$ by rule iii, i.e. $1=\left|\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & 1\end{array}\right]\right|=-\frac{3}{2}\left|\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & -\frac{2}{3}\end{array}\right]\right|$. It follows that $\left|\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & -\frac{2}{3}\end{array}\right]\right|=1 \div\left(-\frac{3}{2}\right)=-\frac{2}{3}$. Since $\left[\begin{array}{cc}1 & \frac{4}{3} \\ 0 & -\frac{2}{3}\end{array}\right]$ was obtained from $\left[\begin{array}{cc}1 & \frac{4}{3} \\ 5 & 6\end{array}\right]$ by subtracting a multiple of one row from another, rule $i v$ tells us that $\left|\left[\begin{array}{ll}1 & \frac{4}{3} \\ 5 & 6\end{array}\right]\right|=-\frac{2}{3}$ too. $\left[\begin{array}{ll}1 & \frac{4}{3} \\ 5 & 6\end{array}\right]$ was obtained from our original matrix \mathbf{A} by multiplying a row by $\frac{1}{3}$, so $-\frac{2}{3}=\left|\left[\begin{array}{cc}1 & \frac{4}{3} \\ 5 & 6\end{array}\right]\right|=\frac{1}{3}|\mathbf{A}|$ by rule iii. Thus $|\mathbf{A}|=\left(-\frac{2}{3}\right) \div \frac{1}{3}=-2$. [Whew!]
2. Rules $i i-i v$ are true for the columns of \mathbf{A} as well as the rows. Why? [2]

Solution. Rule v is the reason ${ }^{1}$. Applying the operations mentioned in rules $i i-i v$ to the columns of \mathbf{A} corresponds to applying them to the rows of \mathbf{A}^{T}. Rule v tells us that $|\mathbf{B}|=\left|\mathbf{B}^{T}\right|$ for any matrix \mathbf{B}, so the effect on $|\mathbf{A}|$ of column operations on \mathbf{A} is exactly the same as the effect on $\left|\mathbf{A}^{T}\right|$ of the corresponding row operations on \mathbf{A}^{T}. Hence rules $i i$ - iv work for columns as well as rows.
3. Use the Gauss-Jordan method to put the matrix $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 0\end{array}\right]$ in reduced rowechelon form. Apply what you have learned above to use this computation to determine $|\mathbf{A}|$. [3]

Solution. We'll use the same method as for 1c above, though we won't be quite so painstaking in tracing how the determinant changes during the computation. First, the full Gauss-Jordan:

$$
\left.\begin{array}{l}
{\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 0
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{2}}{\Longrightarrow}\left[\begin{array}{lll}
3 & 4 & 5 \\
0 & 1 & 2 \\
6 & 7 & 0
\end{array}\right] \stackrel{\frac{1}{3} R_{1}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
0 & 1 & 2 \\
6 & 7 & 0
\end{array}\right]} \\
\Longrightarrow \\
R_{3}-6 R_{1}
\end{array}\left[\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
0 & 1 & 2 \\
0 & -1 & -10
\end{array}\right] \stackrel{R_{1}-\frac{4}{3} R_{2}}{\underset{R_{3}+R_{2}}{\Longrightarrow}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & -8
\end{array}\right] \underset{-\frac{1}{8} R_{3}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\right) .
$$

[^0]\[

$$
\begin{aligned}
& R_{1}+R_{3} \\
& R_{2}-2 R_{3}
\end{aligned}
$$ \underset{ }{\Longrightarrow}\left[$$
\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$\right]
\]

The row-reduced matrix has determinant 1 by rule i. The only row operations which changed the determinant were the swap of two rows and the multiplication of rows by $\frac{1}{3}$ and $-\frac{1}{8}$, repectively. It follows that $\left(-\frac{1}{8}\right)\left(\frac{1}{3}\right)(-1)|\mathbf{A}|=1$, so it must be the case that $|\mathbf{A}|=1 \div\left(-\frac{1}{8}\right)\left(\frac{1}{3}\right)(-1)=24$.

Bonus. Assuming the general part of rule $i v$ (the part in parentheses) is true, show that the particular part of rule $i v$ (the part not in parentheses) must be true. You may use the other rules as well. [2]
Solution. Suppose we obtain \mathbf{E} by adding c times row i of \mathbf{A} to row j of \mathbf{A}. (That is, $\mathbf{A} \underset{R_{j}+c R_{i}}{\longrightarrow} \mathbf{E}$.) Suppose \mathbf{C} is the matrix \mathbf{A} with row j replaced by c times row i, and \mathbf{B} is the matrix \mathbf{A} with row j replaced by row i. Then $|\mathbf{E}|=|\mathbf{A}|+|\mathbf{C}|$ (by rule $i v$) $=$ $|\mathbf{A}|+c|\mathbf{B}|$ (by rule $i i i$). Since $|\mathbf{B}|=0$ by $\mathbf{1 b}$, it follows that $|\mathbf{E}|=|\mathbf{A}|$.

[^0]: 1 But only when rows are not in season! [With apologies to Tom Lehrer.]

