Mathematics 1350 H - Linear algebra I: Matrix algebra
 Trent University, Summer 2013
 Solutions to Assignment \#3

 Complex relationships

 Complex relationships}

Let \mathbf{I}_{n} denote the $n \times n$ identity matrix.

1. Find a 2×2 matrix \mathbf{T} such that $\mathbf{T}^{2}=-\mathbf{I}_{2}$. [4]

Solution. There are a lot of ways to get the job done. One of the simplest matrices that works is $\mathbf{T}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that if $\mathbf{T}^{2}=-\mathbf{I}_{2}$, then $(-\mathbf{T})^{2}=-\mathbf{I}_{2}$ as well. (Why?)
2. Find 4×4 matrices U, V, and W such that $\mathbf{U}^{2}=\mathbf{V}^{2}=\mathbf{W}^{2}=-\mathbf{I}_{4}, \mathbf{U V}=\mathbf{W}$, $\mathbf{V W}=\mathbf{U}, \mathbf{W} \mathbf{U}=\mathbf{V}, \mathbf{V} \mathbf{U}=-\mathbf{W}, \mathbf{W V}=-\mathbf{U}$, and $\mathbf{U W}=-\mathbf{V} .[6]$

Hint: You can use the matrix \mathbf{T} from your solution to problem $\mathbf{1}$ as a submatrix of at least one of the matrices you need to build for problem 2.
Solution. Following the hint, or applying the idea behind the solution to $\mathbf{1}$ on a larger scale, let

$$
\mathbf{U}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{T} \\
\mathbf{T} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{V}=\left[\begin{array}{cc}
-\mathbf{T} & \mathbf{0} \\
\mathbf{0} & \mathbf{T}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Then we must have

$$
\mathbf{W}=\mathbf{U V}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

and we'll leave it to the interested reader to check that all the matrix equations that must be satisfied actually are.

