Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2013

 Quizzes

 Quizzes}

Quiz \#1. Wednesday, 15 May, 2013. [10 minutes]

1. Draw a sketch of the points $(1,0,1)$ and $(0,1,1)$, and the line joining them. (A crude sketch will suffice. :-) [1.5]
2. Find a vector parallel to the line. [1.5]
3. Determine whether the vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is perpendicular to the line or not. [2]

Quiz \#2. Wednesday, 22 May, 2013. [10 minutes]
Let $\mathbf{i}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

1. Find a vector \mathbf{u} such that the angle between \mathbf{i} and \mathbf{u} is $\frac{\pi}{4}$ radians (i.e. 45°). [3]
2. Verify that the angle between \mathbf{i} and \mathbf{u} really is $\frac{\pi}{4}$ radians. [2]

Quiz \#3. Monday, 27 May, 2013. [15 minutes]

1. Find all the solutions, if any, to the following system of linear equations:

$$
\begin{aligned}
2 x+3 y+z & =6 \\
-x+y+z & =1 \\
3 x-y-z & =1
\end{aligned}
$$

Quiz \#4. Wednesday, 29 May, 2013. [15 minutes]

1. Use Gauss-Jordan reduction to find all the solutions, if any, to the following system of linear equations:

$$
\begin{align*}
w+x+y & =1 \\
w+2 y & =1 \\
w+y+z & =1 \\
w+x+z & =1 \tag{5}
\end{align*}
$$

Quiz \#5. Wednesday, 5 June, 2013. [10 minutes]

1. Find the inverse, if any, of the following matrix:

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 2 & 3 \\
2 & 1 & -1
\end{array}\right] \quad[5]
$$

Quiz \#6. Monday, 10 June, 2013. [10 minutes]

1. Let $M=\left\{\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$. Find a minimal spanning subset of M, i.e. a set $P \subseteq M$ that is as small as possible and such that $\operatorname{Span}(P)=\operatorname{Span}(M)$. [5]

Quiz \#7. Wednesday, 12 June, 2013. [12 minutes]
Let $\mathbf{A}=\left[\begin{array}{cccc}2 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 3 & 1 & 0 & 5\end{array}\right]$.

1. Use the Gauss-Jordan method to put \mathbf{A} in row-reduced echelon form. [2]
2. Find a basis for two (2) of the following three subspaces:
i. $\operatorname{col}(\mathbf{A}) \quad$ ii. $\operatorname{row}(\mathbf{A})$
iii. $\operatorname{null}(\mathbf{A}) \quad[3=2 \times 1.5$ each $]$

Quiz \#8. Monday, 17 June, 2013. [15 minutes]
Let $W=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -3 \\ 1 \\ 3\end{array}\right]\right\}$.

1. Find an orthogonal basis for W. [5]
