Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2013
 Final Examination
 Friday, 19 June, 2013

Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Do parts \mathbf{Y} and \mathbf{Z}. Show all your work. If in doubt about something, ask! Aids: Calculator; one $8.5^{\prime \prime} \times 11^{\prime \prime}$ or A4 aid sheet; $\leq 10^{10^{10}}$ neurons.

Part Y. Do all of 1-5.
[Subtotal $=64 / 100]$

1. Consider the matrix $\mathbf{A}=\left[\begin{array}{ccccc}2 & 2 & 2 & 2 & 3 \\ -1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 2 & 2 \\ 1 & 2 & 2 & 4 & 4 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$.
a. Without any calculation, does the equation $\mathbf{A x}=\mathbf{0}$ have no solutions, just one solution, or many solutions? Explain why. [2]
b. Use the Gauss-Jordan method to put \mathbf{A} in reduced row-echelon form. [10]
c. What are the rank and nullity of A? [1]
d. Without any further calculation, give a basis for $\operatorname{col}(\mathbf{A})$. [3]
e. Find a basis for null(A). [4]
2. Consider the line in \mathbb{R}^{3} passing through the points $(2,2,0)$ and $(2,0,2)$, and also the line passing through the points $(0,1,1)$ and $(1,1,1)$.
a. Sketch these points and lines. [2]
b. Find a parametric description of each of these lines. [4]
c. Find the point at which the two lines meet and the (smallest) angle between them at that point. [4]
3. Let $\mathbf{B}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right] . \quad \begin{aligned} & \text { a. Find } \mathbf{B}^{-1} \text {, if it exists. [10] } \\ & \text { b. Use your work in part a to compute }|\mathbf{B}| .\end{aligned}$ [5]
4. Find an equation of the form $a x+b y+c z=d$ for the plane containing both the line $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]+t\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ and the point $(1,1,1) .[9]$
5. Let $\mathbf{D}=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right] . \quad \begin{array}{ll}\text { a. } & \text { Find all the eigenvalues of } \mathbf{D} \text {. } \\ \text { b. Find all the eigenvectors of } \mathbf{D} .\end{array}$

Part Z. Do any three of 6-11.
[Subtotal $=36 / 100]$
6. Use the properties of the vector operations and the dot product to verify that if \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then $\mathbf{u} \cdot \mathbf{v}=\frac{1}{2}\left(\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}\|^{2}-\|\mathbf{v}\|^{2}\right) \cdot$ [12]
7. Determine whether $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]| | x|=|y|\}\right.$ a subspace of \mathbb{R}^{2} or not. If it is a subspace, determine its dimension. [12]
8. Consider the planes in \mathbb{R}^{3} given by the equations $2 x+2 y+z=6$ and $x-y=0$, respectively.
a. Give a parametric description of the line of intersection of these two planes. [8]
b. Find the points, if any. in which the line given by $x=t, y=3-t$, and $z=1$ intersects each of the two planes. [4]
9. Find a 2×2 matrix \mathbf{X} such that $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{O}_{2}$, where \mathbf{O}_{2} is the 2×2 zero matrix. Is there another such \mathbf{X} ? Explain why or why not. [12]
10. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

a. Find $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \cdot$ [4] b. Compute $T\left(\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]\right) \cdot$ [8]
11. Find an orthogonal basis for $U=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\} \cdot[12]$

$$
[\text { Total }=100]
$$

Part \bigcirc. Bonus!

${ }^{\bullet \bullet}$. A dangerously sharp tool is used to cut a cube with a side length of 3 cm into 27 smaller cubes with a side length of 1 cm . This can be
 done easily with six cuts. Can it be done with fewer? (You may rearrange the pieces between cuts.) If so, explain how; if not, explain why not. [1]
${ }^{\circ}$. Write an original little poem about linear algebra or mathematics in general. [2]
Enjoy the rest of the summer!

