Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2013

Solutions to the Final Examination
Friday, 19 June, 2013
Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Do parts \mathbf{Y} and \mathbf{Z}. Show all your work. If in doubt about something, ask!
Aids: Calculator; one $8.5^{\prime \prime} \times 11^{\prime \prime}$ or A4 aid sheet; $\leq 10^{10^{10}}$ neurons.
Part Y. Do all of 1-5.
[Subtotal $=64 / 100]$

1. Consider the matrix $\mathbf{A}=\left[\begin{array}{ccccc}2 & 2 & 2 & 2 & 3 \\ -1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 2 & 2 \\ 1 & 2 & 2 & 4 & 4 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$.
a. Without any calculation, does the equation $\mathbf{A x}=\mathbf{0}$ have no solutions, just one solution, or many solutions? Explain why. [2]
b. Use the Gauss-Jordan method to put A in reduced row-echelon form. [10]
c. What are the rank and nullity of A? [1]
d. Without any further calculation, give a basis for $\operatorname{col}(\mathbf{A})$. [3]
e. Find a basis for $\operatorname{null}(\mathbf{A})$. [4]

Solutions. a. Since the third and fifth rows are multiples of one another, the rank of the 5×5 matrix \mathbf{A} can be no more than $5-1=4<5$, so it cannot be invertible, and so $\mathbf{A x}=\mathbf{0}$ cannot have an unique solution. It follows that since $\mathbf{A x}=\mathbf{0}$ does have at least one solution, namely $\mathbf{x}=\mathbf{0}$ (since $\mathbf{A 0}=\mathbf{0}$), it must have infinitely many.
b. Here goes:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 2 & 2 & 2 & 3 \\
-1 & 0 & 1 & 0 & -1 \\
0 & 0 & 2 & 2 & 2 \\
1 & 2 & 2 & 4 & 4 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{4}}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 2 & 2 & 4 & 4 \\
-1 & 0 & 1 & 0 & -1 \\
0 & 0 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 3 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]} \\
& \underset{R_{4}+R_{1}}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 2 & 2 & 4 & 4 \\
0 & 2 & 3 & 4 & 3 \\
0 & 0 & 2 & 2 & 2 \\
0 & -2 & -2 & -6 & -5 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \stackrel{R_{1}-R_{2}}{\underset{\frac{1}{2} R_{3}}{\Longrightarrow}}\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 1 \\
R_{4}+R_{2}
\end{array}\left[\begin{array}{ccccc}
2 & 3 & 4 & 3 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & -2 & -2 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]\right. \\
& \stackrel{\frac{1}{2} R_{2}}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & 1 \\
0 & 1 & \frac{3}{2} & 2 & \frac{3}{2} \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & -2 & -2 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \begin{array}{c}
R_{1}+R_{3} \\
R_{2}-\frac{3}{2} R_{3} \\
\Longrightarrow
\end{array} \begin{array}{ccccc}
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & \frac{1}{2} & 0 \\
R_{4}-R_{3} \\
R_{5}-R_{3}
\end{array}\left[\begin{array}{ccccc}
\\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -3 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\underset{-\frac{1}{3} R_{4}}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \stackrel{\left.\begin{array}{c}
R_{1}-R_{4} \\
R_{2}-\frac{1}{2} R_{4} \\
R_{3}-R_{4}
\end{array}\right]}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Whew!
c. Since the reduced matrix has four non-zero rows, $\operatorname{rank}(\mathbf{A})=4$; it follows by the RankNullity Law that the nullity of \mathbf{A} is equal to the number of columns of \mathbf{A} minus its rank, i.e. $\operatorname{nullity}(\mathbf{A})=5-4=1$.
d. The column vectors in the original matrix \mathbf{A} corresponding to the columns in which the reduced matrix has leading 1 s in non-zero rows form a basis for the column space $\operatorname{col}(\mathbf{A})$:

$$
\left\{\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
2 \\
4 \\
1
\end{array}\right]\right\}
$$

e. To find a basis for null(\mathbf{A}), we need to write out the solutions to $\mathbf{A x}=\mathbf{0}$ in vectorparametric form. (Recall from the solution to part a that this homogeneous equation must have infinitely many solutions.) Fortunately, most of the work has already been done in solving part \mathbf{b} above. If we augment \mathbf{A} with a column of 0 s and row-reduce it just as we row-reduced \mathbf{A} in solving part \mathbf{b}, we'll end up with the reduced matrix from part \mathbf{b}, augmented with a column of 0 s :

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In terms of the entries of \mathbf{x}, this comes down to the equations $x_{1}+x_{5}=0, x_{2}-\frac{1}{2} x_{5}=0$, $x_{3}=0$, and $x_{4}+x_{5}=0$. Setting $x_{5}=t$ for a parameter t and solving the preceding equations in terms of t, we get that the solutions to $\mathbf{A x}=\mathbf{0}$ are of the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-t \\
\frac{1}{2} t \\
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
\frac{1}{2} \\
0 \\
-1 \\
1
\end{array}\right]
$$

It follows that $\left\{\left[\begin{array}{c}-1 \\ \frac{1}{2} \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{null}(\mathbf{A})$.
2. Consider the line in \mathbb{R}^{3} passing through the points $(2,2,0)$ and $(2,0,2)$, and also the line passing through the points $(0,1,1)$ and $(1,1,1)$.
a. Sketch these points and lines. [2]
b. Find a parametric description of each of these lines. [4]
c. Find the point at which the two lines meet and the (smallest) angle between them at that point. [4]
Solutions. a. A sketch:

b. The vector from $(2,2,0)$ to $(2,0,2)$ is $\left[\begin{array}{l}2-2 \\ 0-2 \\ 2-0\end{array}\right]=\left[\begin{array}{c}0 \\ -2 \\ 2\end{array}\right]$, so $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]+s\left[\begin{array}{c}0 \\ -2 \\ 2\end{array}\right]$ is a parametric description of the first line. Similarly, the vector from $(0,1,1)$ to $(1,1,1)$ is $\left[\begin{array}{l}1-0 \\ 1-1 \\ 1-1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, so $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is a parametrization of the second line.
c. The two lines meet at a common point exactly when

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]+s\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right]
$$

that is, when $x=0+1 t=2+0 s, y=1+0 t=2-2 s$, and $z=1+0 t=0+2 s$. Simplifying, this comes down to $x=t=2, y=1=2-2 s$, and $z=1=2 s$, and it's pretty obvious that this requires $t=2$ and $s=\frac{1}{2}$. Plugging each value into the parametric description of the appropriate line gives the point $(2,1,1)$.

The angle θ between the lines is the angle between the direction vectors, so

$$
\cos (\theta)=\frac{\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}{\left\|\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right]\right\|\| \|\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \|}=\frac{0}{2 \sqrt{2} \cdot 1}=0
$$

so the angle between the lines is $\frac{\pi}{2}$ radians or 90°, i.e. the lines are perpendicular.
3. Let $\mathbf{B}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right] . \quad \begin{aligned} & \text { a. Find } \mathbf{B}^{-1} \text {, if it exists. [10] } \\ & \text { b. Use your work in part a to compute }|\mathbf{B}| .\end{aligned}$ [5]

Solutions. a. We set up the superaugmented matrix and Gauss-Jordan away:

$$
\begin{aligned}
& {\left[\begin{array}{llll|llll}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \underset{R_{3}-R_{1}}{\Longrightarrow}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{R_{2}} \Longrightarrow R_{3}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \underset{R_{4}-R_{2}}{\Longrightarrow}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & -1 & 1
\end{array}\right] \\
& \begin{array}{c}
\Longrightarrow \\
R_{4}-R_{3}
\end{array}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Since a row of 0 s has turned up on the left-hand side of the reduced super-augmented matrix, the matrix \mathbf{B} has no inverse.
b. Since \mathbf{B} is not invertible by the solution to part $\mathbf{a},|\mathbf{B}|=0$.
4. Find an equation of the form $a x+b y+c z=d$ for the plane containing both the line

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \text { and the point }(1,1,1) .[9]
$$

Solution. Since every point on the line should be in the plane, the point $(0,0,2)$, in particular, must be in the plane. Note also that the direction vector of the line must be parallel to the plane. A second vector parallel to the plane would be the vector that takes one from $(0,0,2)$ to $(1,1,1)$, namely $\left[\begin{array}{l}1-0 \\ 1-0 \\ 1-2\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$. The cross-product of these two vectors will be normal to the plane:

$$
\begin{aligned}
{\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \times\left[\begin{array}{c}
{[1} \\
1 \\
-1
\end{array}\right] } & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right|=+\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right| \mathbf{k} \\
& =[1 \cdot(-1)-1 \cdot 1] \mathbf{i}-[(-1) \cdot(-1)-1 \cdot 1] \mathbf{j}+[(-1) \cdot 1-1 \cdot 1] \mathbf{k} \\
& =-2 \mathbf{i}-0 \mathbf{j}-2 \mathbf{k}=\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]
\end{aligned}
$$

Thus the plane in question has an equation of the form $-2 x-2 z=d$. We solve for d by plugging in $(x, y, z)=(0,0,2): d=-2 \cdot 0-2 \cdot 2=-4$. It follows that $-2 x-2 y=-4$ is
an equation of the plane. (If you don't like -s or factors of 2 , just multiply through by $-\frac{1}{2}$ to get $x+y=2 \ldots:-$)
5. Let $\mathbf{D}=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]$.
a. Find all the eigenvalues of D. [5]
b. Find all the eigenvectors of \mathbf{D}. [5]

Solutions. a. First,

$$
\left|\mathbf{D}-\lambda \mathbf{I}_{2}\right|=\left|\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right|-\lambda\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=\left|\begin{array}{cc}
3-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right|=(3-\lambda)(1-\lambda)-1(-1)=\lambda^{2}-4 \lambda+4
$$

Second, $\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}$, which $=0$ exactly when $\lambda=2$, so \mathbf{D} has 2 as its only eigenvalue.
b. To find all the eigenvectors of \mathbf{D} we need to find all solutions \mathbf{x} to $\left(\mathbf{D}-2 \mathbf{I}_{2}\right) \mathbf{x}=\mathbf{0}$. We plug $\mathbf{D}-2 \mathbf{I}_{2}=\left[\begin{array}{cc}3-2 & -1 \\ 1 & 1-2\end{array}\right]=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$ into the usual augmented matrix and use the Gauss-Jordan method: $\left[\begin{array}{cc|c}1 & -1 & 0 \\ 1 & -1 & 0\end{array}\right] \underset{R_{2}-R_{1}}{\Longrightarrow}\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$. It follows that $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ is an eigenvector of \mathbf{D} exactly when $x-y=0$, i.e. when $x=y$. That is, the eigenvectors of \mathbf{D} are the scalar multiples of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Part Z. Do any three of 6-11.
[Subtotal $=36 / 100]$
6. Use the properties of the vector operations and the dot product to verify that if \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then $\mathbf{u} \cdot \mathbf{v}=\frac{1}{2}\left(\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}\|^{2}-\|\mathbf{v}\|^{2}\right) .[12]$
Solution. Recall that $\mathbf{x} \cdot \mathbf{x}=\|\mathbf{x}\|^{2}$ for any vector \mathbf{x}. With the help of the distributive and commutative properties of the dot product, it follows that:

$$
\begin{aligned}
\frac{1}{2}\left(\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}\|^{2}-\|\mathbf{v}\|^{2}\right) & =\frac{1}{2}((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})-\mathbf{u} \cdot \mathbf{u}-\mathbf{v} \cdot \mathbf{v}) \\
& =\frac{1}{2}(\mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{u}-\mathbf{v} \cdot \mathbf{v}) \\
& =\frac{1}{2}(\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u})=\frac{1}{2}(2 \mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot \mathbf{v}
\end{aligned}
$$

7. Determine whether $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]| | x|=|y|\}\right.$ a subspace of \mathbb{R}^{2} or not. If it is a subspace, determine its dimension. [12]
Solution. W is not a subspace of \mathbb{R}^{2}. To see this, observe that $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right] \in W$ (since $|1|=1=|1|$ and $|1|=1=|-1|$, repectively), but $\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right] \notin W$ (since $|2|=2 \neq 0=|0|)$. As W is not closed under vector addition, it is not a subspace.
8. Consider the planes in \mathbb{R}^{3} given by the equations $2 x+2 y+z=6$ and $x-y=0$, respectively.
a. Give a parametric description of the line of intersection of these two planes. [8]
b. Find the points, if any, in which the line given by $x=t, y=3-t$, and $z=1$ intersects each of the two planes. [4]
Solutions. a. This boils down to finding the solutions of the system of equations $2 x+$ $2 y+z=6$ and $x-y=0$. As usual, we set up the augmented matrix and throw the Gauss-Jordan algorithm at it:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
2 & 2 & 1 & 6 \\
1 & -1 & 0 & 0
\end{array}\right] \stackrel{R_{1}}{\Longrightarrow} \Longrightarrow R_{2}\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
2 & 2 & 1 & 6
\end{array}\right] \underset{R_{2}-2 R_{1}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 4 & 1 & 6
\end{array}\right]} \\
& \underset{\frac{1}{4} R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 1 & \frac{1}{4} & \frac{3}{2}
\end{array}\right] \stackrel{R_{1}+R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & \frac{1}{4} & \frac{3}{2} \\
0 & 1 & \frac{1}{4} & \frac{3}{2}
\end{array}\right] \quad \text { i.e. } \begin{array}{l}
x+\frac{1}{4} z=\frac{3}{2} \\
y+\frac{1}{4} z=\frac{3}{2}
\end{array}
\end{aligned}
$$

Let t be a parameter and set $z=t$; then $x=y=\frac{3}{2}-\frac{1}{4} z$. Thus, the line of intersection of the two planes is given by:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
\frac{3}{2} \\
0
\end{array}\right]+t\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

b. We plug the parametric expressions for the given line into each of the equations for the planes and try to solve for the parameter.

First, $2 x+2 y+z=2 t+2(3-t)+1=2 t+6-2 t+1=7 \neq 6$ no matter what value t has, so the line does not intersect the plane $2 x+2 y+z=6$.

Second, $x-y=t-(3-t)=2 t-3=0$ exactly when $t=\frac{3}{2}$. When $t=\frac{3}{2}, x=t=\frac{3}{2}$, $y=3-t=3-\frac{3}{2}=\frac{3}{2}$, and $z=1$, so the line intersects the plane $x-y=0$ in the point $\left(\frac{3}{2}, \frac{3}{2}, 1\right)$.
9. Find a 2×2 matrix \mathbf{X} such that $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{O}_{2}$, where \mathbf{O}_{2} is the 2×2 zero matrix. Is there another such \mathbf{X} ? Explain why or why not. [12]
Solution. It is tempting to treat this like a normal quadratic equation. Giving in (partway) to this temptation, note that $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2}$ which obviously $=\mathbf{O}_{2}$ when $\mathbf{X}=\mathbf{I}_{2}$.

It is also tempting to suppose that this is the only solution, in the same way that $x^{2}-2 x+1=(x-1)^{2}=0$ only for $x=1$. This temptation should be resisted: the reason $(x-1)^{2}=(x-1)(x-1)=0$ can only happen if $x-1=0$, i.e. $x=1$, is because in the real numbers the only way a^{2} can be 0 is if $a=0$. Unfortunately, there are plenty of matrices $\mathbf{A} \neq \mathbf{O}_{2}$ such that $\mathbf{A}^{2}=\mathbf{O}_{2} . \quad \mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a simple example of such a matrix. The question is whether there is a matrix $\mathbf{X} \neq \mathbf{I}_{2}\left(\right.$ so $\left.\mathbf{X}-\mathbf{I}_{2} \neq \mathbf{O}_{2}\right)$ such that $\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2}=\mathbf{O}_{2}$. The answer is yes: take any matrix $\mathbf{A} \neq \mathbf{O}_{2}$ such that $\mathbf{A}^{2}=\mathbf{O}_{2}$ and let $\mathbf{X}=\mathbf{A}+\mathbf{I}_{2}$. Since $\mathbf{A} \neq \mathbf{O}_{2}, \mathbf{X}=\mathbf{A}+\mathbf{I}_{2} \neq \mathbf{I}_{2}$, and yet $\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2}=\mathbf{A}^{2}=\mathbf{O}_{2}$. For example, using $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $\mathbf{X}=\mathbf{A}+\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is another solution to $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2}=\mathbf{O}_{2}$.
10. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

a. Find $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \cdot[4] \quad$ b. Compute $T\left(\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]\right) \cdot[8]$

Solution. a. We reverse-engineer the desired vector with the help of the linearity of T :

$$
\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=2 T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right)=T\left(2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]\right)
$$

Thus $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]$ does the job.
b. We will use the linearity of T again, but to do so we need to find scalars a, b, and c such that $a\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]+c\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$. Boringly, but as usual, we set up the augmented matrix and use the Gauss-Jordan algorithm:

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
2 & 1 & 0 & 4 \\
3 & 2 & 1 & 5
\end{array}\right] \underset{R_{2}-2 R_{1}}{R_{3}-3 R_{1}}\left[\begin{array}{lll|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -2 \\
0 & 2 & 1 & -4
\end{array}\right] \underset{R_{3}-2 R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

It follows that $\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=3\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-2\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, so

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]\right) & =T\left(3\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right)=3 T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)-2 T\left(\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right) \\
& =3\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right] .
\end{aligned}
$$

11. Find an orthogonal basis for $U=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\} \cdot[12]$

Solution. First, we need to find a basis for U. We assemble the vectors in the spanning set into the columns of a matrix and reduce it:

$$
\left.\begin{array}{c}
{\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \stackrel{R_{2}-R_{1}}{\Longrightarrow}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
R_{3}-R_{2}
\end{array}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \underset{R_{4}-R_{3}}{\Longrightarrow}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\right) .
$$

The columns of the original matrix corresponding to the columns in the reduced matrix in which a leading 1 of a row occurs give a basis for the column space. It follows that $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis for U.

We now orthogonalize this basis using the Gram-Schmidt process:
We take the first basis vector unchanged: $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$. Then

$$
\mathbf{b}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]-\frac{\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right],
$$

and

$$
\begin{aligned}
\mathbf{b}_{\mathbf{3}} & =\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right]}{\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right]}\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{0}{1}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{\frac{3}{2}}\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{2}{3}\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right] .
\end{aligned}
$$

It follows that $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}\frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \\ 1\end{array}\right]\right\}$ is an orthogonal basis for U.

$$
[\text { Total }=100]
$$

Part \odot. Bonus!
${ }^{\bullet}$. A dangerously sharp tool is used to cut a cube with a side length of 3 cm into 27 smaller cubes with a side length of 1 cm . This can be
 done easily with six cuts. Can it be done with fewer? (You may rearrange the pieces between cuts.) If so, explain how; if not, explain why not. [1]
Solution. It cannot be done with less than six cuts. They key is to consider the small cube that is completely inside (that is, no face of it is part of a face of) the original cube. Each of the six faces of this smaller cube must have come from a different cut.
${ }^{\circ}$. Write an original little poem about linear algebra or mathematics in general. [2]
Solution. You're on your own on this one...

Enjoy the rest of the summer!

