
Mathematics 1350H – Linear algebra I: Matrix algebra
Trent University, Summer 2013

Solutions to the Final Examination
Friday, 19 June, 2013

Time: 3 hours Brought to you by Stefan B�lan�k.

Instructions: Do parts Y and Z. Show all your work. If in doubt about something, ask!

Aids: Calculator; one 8.5′′ × 11′′ or A4 aid sheet; ≤ 1010
10

neurons.

Part Y. Do all of 1–5. [Subtotal = 64/100]

1. Consider the matrix A =


2 2 2 2 3
−1 0 1 0 −1
0 0 2 2 2
1 2 2 4 4
0 0 1 1 1

.

a. Without any calculation, does the equation Ax = 0 have no solutions, just one
solution, or many solutions? Explain why. [2]

b. Use the Gauss-Jordan method to put A in reduced row-echelon form. [10]
c. What are the rank and nullity of A? [1]
d. Without any further calculation, give a basis for col(A). [3]
e. Find a basis for null(A). [4]

Solutions. a. Since the third and fifth rows are multiples of one another, the rank of
the 5× 5 matrix A can be no more than 5− 1 = 4 < 5, so it cannot be invertible, and so
Ax = 0 cannot have an unique solution. It follows that since Ax = 0 does have at least
one solution, namely x = 0 (since A0 = 0), it must have infinitely many. �

b. Here goes: 
2 2 2 2 3
−1 0 1 0 −1
0 0 2 2 2
1 2 2 4 4
0 0 1 1 1


R1 ↔ R4

=⇒


1 2 2 4 4
−1 0 1 0 −1
0 0 2 2 2
2 2 2 2 3
0 0 1 1 1


R2 +R1

=⇒
R4 − 2R1


1 2 2 4 4
0 2 3 4 3
0 0 2 2 2
0 −2 −2 −6 −5
0 0 1 1 1


R1 −R2

=⇒
1
2R3

R4 +R2


1 0 −1 0 1
0 2 3 4 3
0 0 1 1 1
0 0 1 −2 −2
0 0 1 1 1


1
2R2

=⇒


1 0 −1 0 1
0 1 3

2 2 3
2

0 0 1 1 1
0 0 1 −2 −2
0 0 1 1 1


R1 +R3

R2 − 3
2R3

=⇒
R4 −R3

R5 −R3


1 0 0 1 2
0 1 0 1

2 0
0 0 1 1 1
0 0 0 −3 −3
0 0 0 0 0


1



=⇒
− 1

3R4


1 0 0 1 2
0 1 0 1

2 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0


R1 −R4

R2 − 1
2R4

R3 −R4

=⇒


1 0 0 0 1
0 1 0 0 − 1

2
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0


Whew! �

c. Since the reduced matrix has four non-zero rows, rank(A) = 4; it follows by the Rank-
Nullity Law that the nullity of A is equal to the number of columns of A minus its rank,
i.e. nullity(A) = 5− 4 = 1. �

d. The column vectors in the original matrix A corresponding to the columns in which the
reduced matrix has leading 1s in non-zero rows form a basis for the column space col(A):




2
−1
0
1
0

 ,


2
0
0
2
0

 ,


2
1
2
2
1

 ,


2
0
2
4
1


 �

e. To find a basis for null(A), we need to write out the solutions to Ax = 0 in vector-
parametric form. (Recall from the solution to part a that this homogeneous equation must
have infinitely many solutions.) Fortunately, most of the work has already been done in
solving part b above. If we augment A with a column of 0s and row-reduce it just as
we row-reduced A in solving part b, we’ll end up with the reduced matrix from part b,
augmented with a column of 0s:


1 0 0 0 1
0 1 0 0 − 1

2
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0

∣∣∣∣∣∣∣∣∣
0
0
0
0
0


In terms of the entries of x, this comes down to the equations x1 + x5 = 0, x2 − 1

2x5 = 0,
x3 = 0, and x4 + x5 = 0. Setting x5 = t for a parameter t and solving the preceding
equations in terms of t, we get that the solutions to Ax = 0 are of the form

x =


x1
x2
x3
x4
x5

 =


−t
1
2 t
0
−t
t

 = t


−1
1
2
0
−1
1

 .
2



It follows that



−1
1
2
0
−1
1


 is a basis for null(A). �

2. Consider the line in R3 passing through the points (2, 2, 0) and (2, 0, 2), and also the
line passing through the points (0, 1, 1) and (1, 1, 1).

a. Sketch these points and lines. [2]
b. Find a parametric description of each of these lines. [4]
c. Find the point at which the two lines meet and the (smallest) angle between them

at that point. [4]

Solutions. a. A sketch:

�

b. The vector from (2, 2, 0) to (2, 0, 2) is

 2− 2
0− 2
2− 0

 =

 0
−2
2

, so

xy
z

 =

 2
2
0

 + s

 0
−2
2


is a parametric description of the first line. Similarly, the vector from (0, 1, 1) to (1, 1, 1)

is

 1− 0
1− 1
1− 1

 =

 1
0
0

, so

xy
z

 =

 0
1
1

+ t

 1
0
0

 is a parametrization of the second line. �

c. The two lines meet at a common point exactly whenxy
z

 =

 0
1
1

+ t

 1
0
0

 =

 2
2
0

+ s

 0
−2
2

 ,
that is, when x = 0+1t = 2+0s, y = 1+0t = 2−2s, and z = 1+0t = 0+2s. Simplifying,
this comes down to x = t = 2, y = 1 = 2 − 2s, and z = 1 = 2s, and it’s pretty obvious
that this requires t = 2 and s = 1

2 . Plugging each value into the parametric description of
the appropriate line gives the point (2, 1, 1).

The angle θ between the lines is the angle between the direction vectors, so

cos(θ) =

[
0

−2
2

]
·
[
1

0

0

]
∥∥∥∥[ 0

−2
2

]∥∥∥∥ ∥∥∥∥[ 1

0

0

]∥∥∥∥ =
0

2
√

2 · 1
= 0 ,

so the angle between the lines is π
2 radians or 90◦, i.e. the lines are perpendicular. �
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3. Let B =


1 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0

.
a. Find B−1, if it exists. [10]
b. Use your work in part a to compute |B|. [5]

Solutions. a. We set up the superaugmented matrix and Gauss-Jordan away:
1 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =⇒
R3 −R1


1 0 0 1
0 0 1 1
0 1 0 −1
0 1 1 0

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1


R2 ↔ R3

=⇒


1 0 0 1
0 1 0 −1
0 0 1 1
0 1 1 0

∣∣∣∣∣∣∣
1 0 0 0
−1 0 1 0
0 1 0 0
0 0 0 1

 =⇒

R4 −R2


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 1 1

∣∣∣∣∣∣∣
1 0 0 0
−1 0 1 0
0 1 0 0
1 0 −1 1


=⇒

R4 −R3


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

∣∣∣∣∣∣∣
1 0 0 0
−1 0 1 0
0 1 0 0
1 −1 −1 1


Since a row of 0s has turned up on the left-hand side of the reduced super-augmented
matrix, the matrix B has no inverse. �

b. Since B is not invertible by the solution to part a, |B| = 0. �

4. Find an equation of the form ax+ by + cz = d for the plane containing both the linexy
z

 =

 0
0
2

+ t

−1
1
1

 and the point (1, 1, 1). [9]

Solution. Since every point on the line should be in the plane, the point (0, 0, 2), in
particular, must be in the plane. Note also that the direction vector of the line must be
parallel to the plane. A second vector parallel to the plane would be the vector that takes

one from (0, 0, 2) to (1, 1, 1), namely

 1− 0
1− 0
1− 2

 =

 1
1
−1

. The cross-product of these two

vectors will be normal to the plane:−1
1
1

×
 [1

1
−1

 =

∣∣∣∣∣∣
i j k
−1 1 1
1 1 −1

∣∣∣∣∣∣ = +

∣∣∣∣ 1 1
1 −1

∣∣∣∣ i− ∣∣∣∣−1 1
1 −1

∣∣∣∣ j +

∣∣∣∣−1 1
1 1

∣∣∣∣k
= [1 · (−1)− 1 · 1] i− [(−1) · (−1)− 1 · 1] j + [(−1) · 1− 1 · 1]k

= −2i− 0j− 2k =

−2
0
2


Thus the plane in question has an equation of the form −2x− 2z = d. We solve for d by
plugging in (x, y, z) = (0, 0, 2): d = −2 · 0 − 2 · 2 = −4. It follows that −2x − 2y = −4 is

4



an equation of the plane. (If you don’t like −s or factors of 2, just multiply through by
− 1

2 to get x+ y = 2 . . . :-) �

5. Let D =

[
3 −1
1 1

]
.

a. Find all the eigenvalues of D. [5]
b. Find all the eigenvectors of D. [5]

Solutions. a. First,

|D− λI2| =
∣∣∣∣ 3 −1
1 1

∣∣∣∣−λ ∣∣∣∣ 1 0
0 1

∣∣∣∣ =

∣∣∣∣ 3− λ −1
1 1− λ

∣∣∣∣ = (3−λ)(1−λ)−1(−1) = λ2−4λ+4 .

Second, λ2 − 4λ + 4 = (λ − 2)2, which = 0 exactly when λ = 2, so D has 2 as its only
eigenvalue. �

b. To find all the eigenvectors of D we need to find all solutions x to (D− 2I2)x = 0.

We plug D− 2I2 =

[
3− 2 −1

1 1− 2

]
=

[
1 −1
1 −1

]
into the usual augmented matrix and use

the Gauss-Jordan method:

[
1 −1
1 −1

∣∣∣∣ 0
0

]
=⇒

R2 −R1

[
1 −1
0 0

∣∣∣∣ 0
0

]
. It follows that x =

[
x
y

]
is an eigenvector of D exactly when x− y = 0, i.e. when x = y. That is, the eigenvectors

of D are the scalar multiples of

[
1
1

]
. �

Part Z. Do any three of 6–11. [Subtotal = 36/100]

6. Use the properties of the vector operations and the dot product to verify that if u and

v are vectors in Rn, then u · v =
1

2

(
‖u + v‖2 − ‖u‖2 − ‖v‖2

)
. [12]

Solution. Recall that x · x = ‖x‖2 for any vector x. With the help of the distributive
and commutative properties of the dot product, it follows that:

1

2

(
‖u + v‖2 − ‖u‖2 − ‖v‖2

)
=

1

2
((u + v) · (u + v)− u · u− v · v)

=
1

2
(u · u + u · v + v · u + v · v − u · u− v · v)

=
1

2
(u · v + v · u) =

1

2
(2u · v) = u · v �

7. Determine whether W =

{[
x
y

] ∣∣∣∣ |x| = |y|} a subspace of R2 or not. If it is a

subspace, determine its dimension. [12]

Solution. W is not a subspace of R2. To see this, observe that

[
1
1

]
,

[
1
−1

]
∈ W (since

|1| = 1 = |1| and |1| = 1 = | − 1|, repectively), but

[
1
1

]
+

[
1
−1

]
=

[
2
0

]
/∈ W (since

|2| = 2 6= 0 = |0|). As W is not closed under vector addition, it is not a subspace. �
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8. Consider the planes in R3 given by the equations 2x + 2y + z = 6 and x − y = 0,
respectively.

a. Give a parametric description of the line of intersection of these two planes. [8]
b. Find the points, if any, in which the line given by x = t, y = 3 − t, and z = 1

intersects each of the two planes. [4]

Solutions. a. This boils down to finding the solutions of the system of equations 2x +
2y + z = 6 and x − y = 0. As usual, we set up the augmented matrix and throw the
Gauss-Jordan algorithm at it:[

2 2 1
1 −1 0

∣∣∣∣ 6
0

]
R1 ↔ R2

=⇒

[
1 −1 0
2 2 1

∣∣∣∣ 0
6

]
=⇒

R2 − 2R1

[
1 −1 0
0 4 1

∣∣∣∣ 0
6

]
=⇒
1
4R2

[
1 −1 0
0 1 1

4

∣∣∣∣ 0
3
2

]
R1 +R2

=⇒

[
1 0 1

4
0 1 1

4

∣∣∣∣ 3
2
3
2

]
i.e.

x+ 1
4z = 3

2
y + 1

4z = 3
2

Let t be a parameter and set z = t; then x = y = 3
2 −

1
4z. Thus, the line of intersection of

the two planes is given by: xy
z

 =

 3
2
3
2
0

+ t

 1
4
1
4
1

 �

b. We plug the parametric expressions for the given line into each of the equations for the
planes and try to solve for the parameter.

First, 2x+ 2y + z = 2t+ 2(3− t) + 1 = 2t+ 6− 2t+ 1 = 7 6= 6 no matter what value
t has, so the line does not intersect the plane 2x+ 2y + z = 6.

Second, x− y = t− (3− t) = 2t− 3 = 0 exactly when t = 3
2 . When t = 3

2 , x = t = 3
2 ,

y = 3 − t = 3 − 3
2 = 3

2 , and z = 1, so the line intersects the plane x − y = 0 in the point(
3
2 ,

3
2 , 1
)
. �

9. Find a 2 × 2 matrix X such that X2 − 2X + I2 = O2, where O2 is the 2 × 2 zero
matrix. Is there another such X? Explain why or why not. [12]

Solution. It is tempting to treat this like a normal quadratic equation. Giving in
(partway) to this temptation, note that X2 − 2X + I2 = (X− I2)

2
which obviously = O2

when X = I2.
It is also tempting to suppose that this is the only solution, in the same way that

x2 − 2x+ 1 = (x− 1)2 = 0 only for x = 1. This temptation should be resisted: the reason
(x−1)2 = (x−1)(x−1) = 0 can only happen if x−1 = 0, i.e. x = 1, is because in the real
numbers the only way a2 can be 0 is if a = 0. Unfortunately, there are plenty of matrices

A 6= O2 such that A2 = O2. A =
[
0 1

0 0

]
is a simple example of such a matrix. The

question is whether there is a matrix X 6= I2 (so X− I2 6= O2) such that (X− I2)
2

= O2.
The answer is yes: take any matrix A 6= O2 such that A2 = O2 and let X = A+ I2. Since

A 6= O2, X = A+ I2 6= I2, and yet (X− I2)
2

= A2 = O2. For example, using A =
[
0 1

0 0

]
,

X = A + I2 =
[
1 1

0 1

]
is another solution to X2 − 2X + I2 = (X− I2)

2
= O2. �
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10. Suppose T : R3 → R3 is a linear transformation such that

T

 1
2
3

 =

 1
0
0

 , T
 0

1
2

 =

 0
1
0

 , and T

 0
0
1

 =

 0
0
1

 .

a. Find

xy
z

 such that T

xy
z

 =

 2
1
0

. [4] b. Compute T

 3
4
5

. [8]

Solution. a. We reverse-engineer the desired vector with the help of the linearity of T : 2
1
0

 = 2

 1
0
0

+

 0
1
0

 = 2T

 1
2
3

+ T

 0
1
2

 = T

2

 1
2
3

+

 0
1
2

 = T

 2
5
8



Thus

xy
z

 =

 2
5
8

 does the job. �

b. We will use the linearity of T again, but to do so we need to find scalars a, b, and c such

that a

 1
2
3

 + b

 0
1
2

 + c

 0
0
1

 =

 3
4
5

. Boringly, but as usual, we set up the augmented

matrix and use the Gauss-Jordan algorithm: 1 0 0
2 1 0
3 2 1

∣∣∣∣∣∣
3
4
5

 =⇒
R2 − 2R1

R3 − 3R1

 1 0 0
0 1 0
0 2 1

∣∣∣∣∣∣
3
−2
−4

 =⇒
R3 − 2R2

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
3
−2
0



It follows that

 3
4
5

 = 3

 1
2
3

− 2

 0
1
2

, so

T

 3
4
5

 = T

3

 1
2
3

− 2

 0
1
2

 = 3T

 1
2
3

− 2T

 0
1
2


= 3

 1
0
0

− 2

 0
1
0

 =

 3
−2
0

 . �
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11. Find an orthogonal basis for U = Span




1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1

 ,


1
0
0
1


 . [12]

Solution. First, we need to find a basis for U . We assemble the vectors in the spanning
set into the columns of a matrix and reduce it:

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 R2 −R1

=⇒


1 0 0 1
0 1 0 −1
0 1 1 0
0 0 1 1


=⇒

R3 −R2


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 1 1


=⇒

R4 −R3


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0


The columns of the original matrix corresponding to the columns in the reduced matrix
in which a leading 1 of a row occurs give a basis for the column space. It follows that


1
1
0
0

 ,


0
1
1
0

 ,


0
0
1
1


 is a basis for U .

We now orthogonalize this basis using the Gram-Schmidt process:

We take the first basis vector unchanged: b1 =


1
1
0
0

. Then

b2 =


0
1
1
0

−
[ 0

1

1

0

]
·

[ 1

1

0

0

]
[ 1

1

0

0

]
·

[ 1

1

0

0

]


1
1
0
0

 =


0
1
1
0

− 1

2


1
1
0
0

 =


− 1

2
1
2
1
0

 ,
and

b3 =


0
0
1
1

−
[ 0

0

1

1

]
·

[ 1

1

0

0

]
[ 1

1

0

0

]
·

[ 1

1

0

0

]


1
1
0
0

−
[ 0

0

1

1

]
·

[− 1
2

1
2
1

0

]
[− 1

2
1
2
1

0

]
·

[− 1
2

1
2
1

0

]

− 1

2
1
2
1
0



=


0
0
1
1

− 0

1


1
1
0
0

− 1
3
2


− 1

2
1
2
1
0

 =


0
0
1
1

− 2

3


− 1

2
1
2
1
0

 =


1
3
− 1

3
1
3
1

 .
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It follows that




1
1
0
0

 ,

− 1

2
1
2
1
0

 ,


1
3
− 1

3
1
3
1


 is an orthogonal basis for U . �

[Total = 100]

Part ♥. Bonus!
••
^ . A dangerously sharp tool is used to cut a cube with a side length of

3 cm into 27 smaller cubes with a side length of 1 cm. This can be
done easily with six cuts. Can it be done with fewer? (You may
rearrange the pieces between cuts.) If so, explain how; if not, explain why not. [1]

Solution. It cannot be done with less than six cuts. They key is to consider the small
cube that is completely inside (that is, no face of it is part of a face of) the original cube.
Each of the six faces of this smaller cube must have come from a different cut. �

◦◦
^ . Write an original little poem about linear algebra or mathematics in general. [2]

Solution. You’re on your own on this one . . . �

Enjoy the rest of the summer!
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