Mathematics 1350H - Linear algebra I: Matrix algebra

TRENT UNIVERSITY, Summer 2013

 $\begin{array}{c} \text{Assignment } \#3 \\ \textit{Due on Wednesday, 5 June, 2013.} \end{array}$

Complex relationships

Let \mathbf{I}_n denote the $n \times n$ identity matrix.

- 1. Find a 2×2 matrix **T** such that $\mathbf{T}^2 = -\mathbf{I}_2$. [4]
- 2. Find 4×4 matrices U, V, and W such that $\mathbf{U}^2 = \mathbf{V}^2 = \mathbf{W}^2 = -\mathbf{I}_4$, $\mathbf{U}\mathbf{V} = \mathbf{W}$, $\mathbf{V}\mathbf{W} = \mathbf{U}$, $\mathbf{W}\mathbf{U} = \mathbf{V}$, $\mathbf{V}\mathbf{U} = -\mathbf{W}$, $\mathbf{W}\mathbf{V} = -\mathbf{U}$, and $\mathbf{U}\mathbf{W} = -\mathbf{V}$. [6]

HINT: You can use the matrix **T** from your solution to problem **1** as a submatrix of at least one of the matrices you need to build for problem **2**.