Mathematics 1350H - Linear algebra I: Matrix algebra
 Trent University, Summer 2013

Assignment \#3
Due on Wednesday, 5 June, 2013.

Complex relationships

Let \mathbf{I}_{n} denote the $n \times n$ identity matrix.

1. Find a 2×2 matrix \mathbf{T} such that $\mathbf{T}^{2}=-\mathbf{I}_{2}$. [4]
2. Find 4×4 matrices U, V, and W such that $\mathbf{U}^{2}=\mathbf{V}^{2}=\mathbf{W}^{2}=-\mathbf{I}_{4}, \mathbf{U V}=\mathbf{W}$, $\mathbf{V W}=\mathbf{U}, \mathbf{W} \mathbf{U}=\mathbf{V}, \mathbf{V} \mathbf{U}=-\mathbf{W}, \mathbf{W V}=-\mathbf{U}$, and $\mathbf{U W}=-\mathbf{V} .[6]$

Hint: You can use the matrix \mathbf{T} from your solution to problem $\mathbf{1}$ as a submatrix of at least one of the matrices you need to build for problem 2.

