Trent University

MATH 1350H Test

4 November, 2009
Time: 50 minutes

| Name: \quad Solutions |
| :--- | :---: |
| Student Number: $\quad 00000000$ |

Question	Mark
1	
2	-
3	-
4	-

Total

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet (or an annotated Formula for Success).

1. Consider the line passing through the points $(1,0,0)$ and $(2,1,0)$.
a. Sketch this line. [2]
b. Find a parametric description of this line. [4]
c. What is the acute angle between this line and the plane given by $y+z=1$? [4]

Solution to a. We plot the two points and draw the line joining them:

Note that the line is entirely in the $x y$ plane.
Solution to b. We'll use $(1,0,0)$ as the base point, and the vector from $(1,0,0)$ to $(2,1,0),\left[\begin{array}{l}2-1 \\ 1-0 \\ 0-0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, as the direction vector. This gives $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ as a parametric description of the line.
Solution to c. We first compute the angle α between the direction vector of the line and the normal vector of the plane:

$$
\cos (\alpha)=\frac{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}{\left\|\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\|\left\|\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\|}=\frac{1 \cdot 0+1 \cdot 1+0 \cdot 1}{\sqrt{1^{2}+1^{2}+0^{2}} \sqrt{0^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2}
$$

Thus $\alpha=60^{\circ}=\frac{\pi}{3}$ rad.
However, we really want the angle between the (direction vector of the) line and the plane, which will be $90^{\circ}-\alpha=30^{\circ}$ or $\frac{\pi}{2}-\alpha=\frac{\pi}{6} \mathrm{rad}$.

$$
\text { 2. Consider the following system of linear equations: } \quad \begin{gathered}
x+y+z=6 \\
2 x-y+z=3 \\
3 x+y-z=2
\end{gathered}
$$

a. Find the solution(s), if any, of this system of equations. [7]
b. What does your answer to a tell you about some planes? [1.5]
c. What does your answer to a tell you about some vectors? [1.5]

Solution to a. We set up the augmented matrix and reduce it the Gauss-Jordan way:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
2 & -1 & 1 & 3 \\
3 & 1 & -1 & 2
\end{array}\right] \underset{R_{2}-2 R_{1}}{\Longrightarrow} R_{3}-3 R_{1}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -3 & -1 & -9 \\
0 & -2 & -4 & -16
\end{array}\right] \underset{R_{2} \leftrightarrow}{\Longrightarrow} R_{3}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & -2 & -4 & -16 \\
0 & -3 & -1 & -9
\end{array}\right]} \\
& \underset{-\frac{1}{2} R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & -3 & -1 & -9
\end{array}\right] \underset{\substack{ \\
R_{3}+3 R_{2}}}{R_{1}-R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 8 \\
0 & 0 & 5 & 15
\end{array}\right] \underset{\frac{1}{5} R_{3}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 8 \\
0 & 0 & 1 & 3
\end{array}\right] \\
& \xrightarrow{R_{1}+R_{3}} \begin{array}{l}
R_{2}-2 R_{3}
\end{array}\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] \\
& \text { This tells that there is just one solution to the given } \\
& \text { system of linear equations: } x=1, y=2 \text {, and } z=3 \text {. }
\end{aligned}
$$

Solution to \mathbf{b}. The answer to a tells us that the three planes given by the linear equations $x+y+z=6,2 x-y+z=3$, and $3 x+y-z=2$, respectively, intersect in a single point, $(1,2,3)$.
Solution to c. The answer to a tells us that the vector $\left[\begin{array}{l}6 \\ 3 \\ 2\end{array}\right]$ is a linear combination (i.e. is in the span of) the three vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$, and $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$, namely

$$
1\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+3\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3 \\
2
\end{array}\right] .
$$

3. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Find a linear equation for the plane given by the vector-parametric equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

b. Sketch the plane $x+2 y+3 z=6$.
c. Find the shortest distance from the point $(1,1,2)$ to the plane $x+y+z=1$.

Solution to a. We will need a normal vector for the plane, which we will obtain by taking the cross-product of the given direction vectors.

$$
\begin{aligned}
{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \times\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] } & =\left|\begin{array}{cc}
\mathbf{i} & \mathbf{j} \\
-1 & \mathbf{k} \\
0 & 1 \\
0
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right| \mathbf{k} \\
& =(1 \cdot 1-0 \cdot 1) \mathbf{i}-((-1) \cdot 1-0 \cdot 0) \mathbf{j}+((-1) \cdot 1-0 \cdot 1) \mathbf{k} \\
& =\mathbf{i}+\mathbf{j}-\mathbf{k}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

It follows that the plane has an equation of the form $x+y-z=d$. To determine d, we plug in a point of the plane; one such is given by the base vector, $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, of the parametric description. Thus $d=1+1-1=1$, and so one linear equation for the given plane is $x+y-z=1$.

Solution to b. We first find the intercepts of the given plane. Plugging $y=z=0$ into $x+2 y+3 z=6$ and solving for x gives us $x=6$, so the x-intercept of the plane is $(6,0,0)$. Similarly, plugging in $x=z=0$ gives $y=3$, so the y-intercept is ($0,3,0$), and plugging in $x=y=0$ gives $z=2$, so the z-intercept is $(0,0,2)$. Now we plot these three points and join them up; the resulting triangle is the part of the given plane that is in the first octant.

Solution to c. We first find a point on the plane. Setting $y=z=0$ and solving for x in $x+y+z=1$ gives us the point $(1,0,0)$. The vector from this point to the given point is $\mathbf{v}=\left[\begin{array}{l}1-1 \\ 1-0 \\ 2-0\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. We project this vector onto the normal vector for the plane, $\mathbf{n}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$:

$$
\operatorname{proj}_{\mathbf{n}}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}=\frac{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{0 \cdot 1+1 \cdot 1+1 \cdot 2}{1 \cdot 1+1 \cdot 1+1 \cdot 1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{3}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

The distance from the point to the plane is the length of this projection: $\left\|\operatorname{proj}_{\mathbf{n}}(\mathbf{v})\right\|=$ $\left\|\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$.
4. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Why isn't every vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$?
b. Compute $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{8}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
c. Find a 2×3 matrix \mathbf{A} such that $\mathbf{A A}^{T}=\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Solution to a. Because in three dimensions you need at least three vectors to be able to span everything ...
Solution to b. Here goes:

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{8} } & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& =\left(\left[\begin{array}{lll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)\left(\left[\begin{array}{lll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 \\
0 & 1
\end{array}\right]=\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\right)\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 8 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Solution to c. Our inspiration here is that $\mathbf{I}_{2}^{T}=\mathbf{I}_{2}$ and so $\mathbf{I}_{2} \mathbf{I}_{2}^{T}=\mathbf{I}_{2}$. We pad out \mathbf{I}_{2} with an extra column of 0 s to get our matrix: $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. Then

$$
\mathbf{A A}^{T}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{T}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbf{I}_{2},
$$

so the job is done!

$$
[\text { Total }=40]
$$

