Mathematics 1350 H - Linear algebra I: matrix algebra Trent University, Fall 2009

MATH 1350H Test
4 November, 2009
Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet (or an annotated Formula for Success).

1. Consider the line passing through the points $(1,0,0)$ and $(2,1,0)$.
a. Sketch this line. [2]
b. Find a parametric description of this line. [4]
c. What is the acute angle between this line and the plane given by $y+z=1$? [4]

$$
\begin{gathered}
x+y+z=6 \\
2 x-y+z=3 \\
3 x+y-z=2
\end{gathered}
$$

2. Consider the following system of linear equations: $2 x-y+z=3$
a. Find the solution(s), if any, of this system of equations. [7]
b. What does your answer to a tell you about some planes? [1.5]
c. What does your answer to a tell you about some vectors? [1.5]
3. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Find a linear equation for the plane given by the vector-parametric equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

b. Sketch the plane $x+2 y+3 z=6$.
c. Find the shortest distance from the point $(1,1,2)$ to the plane $x+y+z=1$.
4. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Why isn't every vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in Span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right\}$?
b. Compute $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{8}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
c. Find a 2×3 matrix \mathbf{A} such that $\mathbf{A A}^{T}=\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

$$
[\text { Total }=40]
$$

