Mathematics 1350H - Linear algebra I: matrix algebra
 Trent University, Fall 2009

Solutions to Assignment \#6

A t0y un1verse

We're going to define our vectors using a different bunch of scalars, namely $\mathbb{Z}_{2}=\{0,1\}$, where + and \cdot are given by the following tables:

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

If you know about modular arithmetic, this is just addition and multiplication modulo 2 . You may take it on faith that this gives something algebraically well-behaved enough to be usable as a set of scalars.

The set of three-dimensional vectors we get from these scalars is

$$
\mathbb{Z}_{2}^{3}=\left\{\left.\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right] \right\rvert\, \text { each of } u, v, w \text { is } 0 \text { or } 1\right\}
$$

with addition of vectors and multiplication by scalars given by

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]+\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
a+r \\
b+s \\
c+t
\end{array}\right] \quad \text { and } \quad \alpha\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
\alpha \cdot u \\
\alpha \cdot v \\
\alpha \cdot w
\end{array}\right]
$$

using the addition and multiplication of scalars defined above.

1. How many vectors are there in \mathbb{Z}_{2}^{3} ? List them all! [2]

Solution. There are eight vectors in \mathbb{Z}_{2}^{3}, namely

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \text { and }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

2. If $\mathbf{u}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is a vector of \mathbb{Z}_{2}^{3}, what is - \mathbf{u} ? Why? [2]

Solution. $-\mathbf{u}=\mathbf{u}$ for any vector \mathbf{u} in \mathbb{Z}_{2}^{3}. The reason is that $1+1=0$ in \mathbb{Z}_{2}, and so $-1=1$ in \mathbb{Z}_{2}. Thus $-\mathbf{u}=(-1) \mathbf{u}=1 \mathbf{u}=\mathbf{u}$.
3. How many subspaces does \mathbb{Z}_{2}^{3} have? List them all! [4]

Solution. \mathbb{Z}_{2}^{3} has sixteen (16) subspaces: one 0-dimensional subspace,

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\},
$$

seven 1-dimensional subspaces,

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} \\
& \left.\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}, \text { and }\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

seven 2-dimensional subspaces,

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}, \\
& \left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}, \\
& \left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}, \\
& \text { and }\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\},
\end{aligned}
$$

and one 3 -dimensional subspace, namely

$$
\mathbb{Z}_{2}^{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

itself.

4. Find an example of weird behaviour by the dot product of vectors in \mathbb{Z}_{2}^{3}. [2]

Solution. One nasty problem is illustrated by

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=1 \cdot 1+1 \cdot 1+0 \cdot 0=1+1+0=(1+1)+0=1+1=0
$$

If the dot product worked out in \mathbb{Z}_{2}^{3} as it does in \mathbb{R}^{3}, this would mean that the vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is orthogonal to itself and has length 0 , even though it isn't the zero vector. (Is this weird enough? :-)

