Mathematics 1350H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2009

Solutions to Assignment #6

A t0y un1verse

We're going to define our vectors using a different bunch of scalars, namely $\mathbb{Z}_2 = \{0, 1\}$, where + and \cdot are given by the following tables:

+	0	1	•	0	1
0	0	1		0	
1	1	0	1	0	1

If you know about modular arithmetic, this is just addition and multiplication modulo 2. You may take it on faith that this gives something algebraically well-behaved enough to be usable as a set of scalars.

The set of three-dimensional vectors we get from these scalars is

$$\mathbb{Z}_2^3 = \left\{ \begin{bmatrix} u \\ v \\ w \end{bmatrix} \middle| \text{ each of } u, v, w \text{ is } 0 \text{ or } 1 \right\},\$$

with addition of vectors and multiplication by scalars given by

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} + \begin{bmatrix} r \\ s \\ t \end{bmatrix} = \begin{bmatrix} a+r \\ b+s \\ c+t \end{bmatrix} \quad \text{and} \quad \alpha \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} \alpha \cdot u \\ \alpha \cdot v \\ \alpha \cdot w \end{bmatrix},$$

using the addition and multiplication of scalars defined above.

1. How many vectors are there in \mathbb{Z}_2^3 ? List them all! [2] SOLUTION. There are eight vectors in \mathbb{Z}_2^3 , namely

$$\begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \text{and} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \mathbb{I}$$

2. If $\mathbf{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is a vector of \mathbb{Z}_2^3 , what is $-\mathbf{u}$? Why? [2]

SOLUTION. $-\mathbf{u} = \mathbf{u}$ for any vector \mathbf{u} in \mathbb{Z}_2^3 . The reason is that 1 + 1 = 0 in \mathbb{Z}_2 , and so -1 = 1 in \mathbb{Z}_2 . Thus $-\mathbf{u} = (-1)\mathbf{u} = 1\mathbf{u} = \mathbf{u}$.

3. How many subspaces does \mathbb{Z}_2^3 have? List them all! [4]

SOLUTION. \mathbb{Z}_2^3 has sixteen (16) subspaces: one 0-dimensional subspace,

$$\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\},$$

seven 1-dimensional subspaces,

$$\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \text{ and } \left\{ \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\},$$

_

_ 、

seven 2-dimensional subspaces,

and one 3-dimensional subspace, namely

Г. **Л**

$$\mathbb{Z}_2^3 = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

itself.

4. Find an example of weird behaviour by the dot product of vectors in \mathbb{Z}_2^3 . [2] SOLUTION. One nasty problem is illustrated by

$$\begin{bmatrix} 1\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0 \end{bmatrix} = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 1 + 1 + 0 = (1+1) + 0 = 1 + 1 = 0.$$

1 If the dot product worked out in \mathbb{Z}_2^3 as it does in \mathbb{R}^3 , this would mean that the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 is orthogonal to itself and has length 0, even though it isn't the zero vector. (Is this weird enough? :-) \blacksquare