Mathematics 1350H - Linear algebra I: matrix algebra Trent University, Fall 2009

 Quizzes

 Quizzes}

Quiz \#1. Friday, 24 September, $2009 \quad$ (10 minutes)
Consider the line in two dimensions given by the equation $y=\frac{1}{2} x-1$.

1. Find the points at which this line crosses the axes and sketch this line. [2]
2. Find a parametric equation(s) for this line. [3]

Quiz \#2. Friday, 2 October, 2009 (5 minutes)
Let $\mathbf{a}=\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}3 \\ 4 \\ 5 \sqrt{3}\end{array}\right]$.

1. Find the lengths of \mathbf{a} and \mathbf{b}. [2]
2. Find the angle between \mathbf{a} and \mathbf{b}. [3]

Quiz $\# \mathbf{3}$. Friday, 9 October, $2009 \quad$ (10 minutes)
Consider the plane given by the vector-parametric equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-1 \\
3
\end{array}\right],
$$

where s and t are the parameters.

1. Find a normal vector for this plane. [2]
2. Find an equation of the form $a x+b y+c z=d$ describing this plane. [2]

Quiz \#4. Friday, 16 October, $2009 \quad$ (10 minutes)

1. Find the point(s), if any, in which the planes given by the equations

$$
\begin{aligned}
x+y+z & =1 \\
3 x-y+z & =1 \\
x-y & =0
\end{aligned}
$$

intersect. [5]
Quiz \#5. Friday, 23 October, 2009 (10 minutes)

1. Determine whether $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]\right\}$ or not. [5]

Quiz \#6. Friday, 13 November, $2009 \quad$ (10 minutes)

1. Why is there only one 2×2 matrix \mathbf{A} such that $\mathbf{B A}=\mathbf{B}$ for every 2×2 matrix \mathbf{B} ? [5]

Quiz \#7. Friday, 20 November, 2009 (10 minutes)

1. Find the inverse of $\mathbf{A}=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2\end{array}\right]$ or show that it is not invertible. [5]

Quiz \#8. Friday, 27 November, $2009 \quad$ (10 minutes)
Let $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & -2\end{array}\right]$.

1. Find a basis for the null space of A. [4]
2. Use your work for problem 1 to identify a basis of the column space of A. [1]

Quiz \#9. Friday, 4 December, 2009 (10 minutes)
Let $\mathbf{A}=\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ -1 & 1 & 0 & 3 \\ 0 & 1 & 2 & 1\end{array}\right]$. You may assume that the rank of \mathbf{A} is 3.

1. Without any calculation, is \mathbf{A} invertible? [2]
2. What is the nullity of \mathbf{A} ? [3]

Quiz \#10. Friday, 11 December, 2009 (10 minutes)

1. Determine whether 4 is an eigenvalue of $\mathbf{A}=\left[\begin{array}{ccc}1 & -1 & -2 \\ 0 & 2 & -3 \\ 0 & 0 & 3\end{array}\right]$. [5]
