Mathematics 1350H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2009

Quizzes

Quiz #1. Friday, 24 September, 2009 (10 minutes)

- Consider the line in two dimensions given by the equation $y = \frac{1}{2}x 1$.
- 1. Find the points at which this line crosses the axes and sketch this line. [2]

2. Find a parametric equation(s) for this line. [3]

Quiz #2. Friday, 2 October, 2009 (5 minutes)

Let
$$\mathbf{a} = \begin{bmatrix} 3\\4\\0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3\\4\\5\sqrt{3} \end{bmatrix}$.

- 1. Find the lengths of \mathbf{a} and \mathbf{b} . [2]
- 2. Find the angle between \mathbf{a} and \mathbf{b} . [3]

Quiz #3. Friday, 9 October, 2009 (10 minutes)

Consider the plane given by the vector-parametric equation

$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$		$\begin{bmatrix} 2 \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$	
y	=	1	+s	-1	+t	-1	,
$\lfloor z \rfloor$		0		0		3	
L -							

where s and t are the parameters.

- 1. Find a normal vector for this plane. [2]
- 2. Find an equation of the form ax + by + cz = d describing this plane. [2]

Quiz #4. Friday, 16 October, 2009 (10 minutes)

1. Find the point(s), if any, in which the planes given by the equations

intersect. [5]

Quiz #5. Friday, 23 October, 2009 (10 minutes)
1. Determine whether
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 is in Span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\4\\1 \end{bmatrix} \right\}$ or not. [5]

Quiz #6. Friday, 13 November, 2009 (10 minutes)

1. Why is there only one 2×2 matrix **A** such that $\mathbf{BA} = \mathbf{B}$ for every 2×2 matrix **B**? [5]

Quiz #7. Friday, 20 November, 2009 (10 minutes) 1. Find the inverse of $\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ or show that it is not invertible. [5]

Quiz #8. Friday, 27 November, 2009 (10 minutes) Let $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & -2 \end{bmatrix}$.

- 1. Find a basis for the null space of A. [4]
- 2. Use your work for problem 1 to identify a basis of the column space of \mathbf{A} . [1]

Quiz #9. Friday, 4 December, 2009 (10 minutes)

Let $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ -1 & 1 & 0 & 3 \\ 0 & 1 & 2 & 1 \end{bmatrix}$. You may assume that the rank of \mathbf{A} is 3.

- 1. Without any calculation, is **A** invertible? [2]
- 2. What is the nullity of \mathbf{A} ? [3]

Quiz #10. Friday, 11 December, 2009 (10 minutes)

1. Determine whether 4 is an eigenvalue of $\mathbf{A} = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 2 & -3 \\ 0 & 0 & 3 \end{bmatrix}$. [5]