Mathematics 1350H – Linear algebra I: matrix algebra

TRENT UNIVERSITY, Fall 2009

FINAL EXAMINATION

Tuesday, 22 December, 2009

Time: 3 hours

Brought to you by Стефан Біланюк.

[Subtotal = 64/100]

Instructions: Show all your work. *If in doubt about something*, **ask!**

Aids: Calculator; annotated Formula for Success or $8.5'' \times 11''$ aid sheet; $\leq 10^{11}$ neurons.

Part I. Do all of 1–5.

1. Consider the planes in \mathbb{R}^3 given by the equations $x + y + \sqrt{2}z = 6$ and z = 0.

- **a.** Sketch these planes. [4]
- **b.** Find the angle between these planes. [3]
- c. Find a parametric description of the line in which these planes intersect. [3]
- 2. Consider the following system of linear equations and its coefficient matrix A:

x	—	y	+	z	—	u	+	v	=	1			Γ1	-1	1	-1	٦1	
x	+	2y	+	4z	+	2u	+	v	=	10	and	$\mathbf{A} =$	1	2	4	2	1	
		3y	+	3z	+	3u			=	9	and		0	3	3	3	0	
				z	+	u	+	v	=	3			LO	0	1	1	1	

Note that x = y = z = u = v = 1 satisfies all four equations.

- **a.** Without any calculation, does this system have no solutions, just one solution, or many solutions? Explain why. [2]
- **b.** Use the Gauss-Jordan method to find all the solutions, if any, of this system. [10]
- **c.** What are the rank and nullity of **A**? [1]
- **d.** Without any further calculation, give a basis for the column space of **A**. [3]
- e. Without any further calculation, give a basis for the null space of A, and explain why it is one. [4]

3. Let
$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$
. **a.** Find all the eigenvalues of **B**. [8]
b. Find all the eigenvectors of **B** corresponding to the eigenvalue $\lambda = 1$. [7]

- **4.** Find the inverse matrix, if it exists, of $\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. [10]
- 5. Find the shortest distance from the point (3,3,1) to the line given by the parametric equations x = 2, y = t, and z = 2 + t. [9]

[Parts II and \bigcirc are on page 2.]

Part II. Do any three of 6–11.

[Subtotal = 36/100]

- 6. Use the properties of the vector operations and the dot product to verify that if **u** and **v** are vectors in \mathbb{R}^2 , then $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} \mathbf{v}) = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$. [12]
- 7. Is $U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| xy = 0 \right\}$ a subspace of \mathbb{R}^2 or not? Explain why or why not. If it is a subspace, what is its dimension? [12]
- 8. Find a linear equation giving the plane that is described by the parametric equations x = 1 + 2t, y = 2 + s + t, and z = 3 + 2s, where s and t are the parameters. [12]
- 9. Suppose A is an $n \times n$ matrix such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} . Does the matrix equation $(\mathbf{X}\mathbf{A})^T\mathbf{A} = \mathbf{A} + 3\mathbf{I}_n$ have a unique solution, too? Solve it if it does and explain why it does; if not, explain why it doesn't. [12]
- 10. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^3$ is an invertible linear transformation such that

$$T\left(\begin{bmatrix}1\\2\\3\end{bmatrix}\right) = \begin{bmatrix}1\\0\\0\end{bmatrix}, \ T\left(\begin{bmatrix}0\\1\\2\end{bmatrix}\right) = \begin{bmatrix}0\\1\\0\end{bmatrix}, \text{ and } T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\0\\1\end{bmatrix}$$

Find the associated matrix $[T^{-1}] = \mathbf{A}_{T^{-1}}$ of T^{-1} . [12]

11. Determine whether
$$\begin{bmatrix} 2\\0\\4 \end{bmatrix}$$
 is in $S = \text{Span} \left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\-4 \end{bmatrix}, \begin{bmatrix} 8\\8\\8 \end{bmatrix}, \begin{bmatrix} 4\\0\\6 \end{bmatrix}, \begin{bmatrix} 4\\2\\5 \end{bmatrix} \right\}$ or not, and find a basis for S . [12]

|Total = 100|

Part \bigcirc . Bonus! The problem in this part goes round and round!

 4π . Write an original little poem about linear algebra or mathematics in general. [2]

HAVE A GREAT BREAK! SEE YOU NEXT TERM, I HOPE!