Mathematics 1350 H - Linear algebra I: matrix algebra
 Trent University, Fall 2009

Solutions to the Final Examination
Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Show all your work. If in doubt about something, ask!
Aids: Calculator; annotated Formula for Success or $8.5^{\prime \prime} \times 11^{\prime \prime}$ aid sheet; $\leq 10^{11}$ neurons.
Part I. Do all of $\mathbf{1 - 5}$.
[Subtotal $=64 / 100]$

1. Consider the planes in \mathbb{R}^{3} given by the equations $x+y+\sqrt{2} z=6$ and $z=0$.
a. Sketch these planes. [4]

Solution.

b. Find the angle between these planes. [3]

Solution. The angle between the planes is the angle between their normal vectors, which we can read off the coefficients of their equations: $x+y+\sqrt{2} z=6$ has normal vector $\mathbf{n}=\left[\begin{array}{c}1 \\ 1 \\ \sqrt{2}\end{array}\right]$ and $z=0 x+0 y+z=0$ has normal vector $\mathbf{k}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. If θ is the angle between these vectors, and hence between the planes, then

$$
\cos (\theta)=\frac{\mathbf{n} \cdot \mathbf{k}}{\|\mathbf{n}\|\|\mathbf{k}\|}=\frac{1 \cdot 0+1 \cdot 0+\sqrt{2} \cdot 1}{\sqrt{1^{2}+1^{2}+\sqrt{2}^{2}} \sqrt{0^{2}+0^{2}+1^{2}}}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}
$$

so $\theta=45^{\circ}=\pi / 2 \mathrm{rad}$.
c. Find a parametric description of the line in which these planes intersect. [3]

Solution.

2. Consider the following system of linear equations and its coefficient matrix \mathbf{A} :

$$
\begin{aligned}
x-y+z-u+v & =1 \\
x+2 y+4 z+2 u+v & =10 \\
3 y+3 z+3 u & =9 \\
z+u+v & =3
\end{aligned} \quad \text { and } \quad \mathbf{A}=\left[\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
1 & 2 & 4 & 2 & 1 \\
0 & 3 & 3 & 3 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Note that $x=y=z=u=v=1$ satisfies all four equations.
a. Without any calculation, does this system have no solutions, just one solution, or many solutions? Explain why. [2]
Solution. This system has many solutions. First, it has at least one solution because $x=y=z=u=v=1$ is a solution. Second, since the system has five variables and only four equations, it cannot have just one solution.
b. Use the Gauss-Jordan method to find all the solutions, if any, of this system. [10] Solution. We set up the "super-augmented" matrix for the system and apply the GaussJordan algorithm:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
1 & -1 & 1 & -1 & 1 & 1 \\
1 & 2 & 4 & 2 & 1 & 10 \\
0 & 3 & 3 & 3 & 0 & 9 \\
0 & 0 & 1 & 1 & 1 & 3
\end{array}\right] \stackrel{R_{2}-R_{1}}{\Longrightarrow}\left[\begin{array}{ccccc|c}
1 & -1 & 1 & -1 & 1 & 1 \\
0 & 3 & 3 & 3 & 0 & 9 \\
0 & 3 & 3 & 3 & 0 & 9 \\
0 & 0 & 1 & 1 & 1 & 3
\end{array}\right]} \\
& \stackrel{\frac{1}{3} R_{2}}{\Longrightarrow}\left[\begin{array}{ccccc|c}
1 & -1 & 1 & -1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 3 \\
0 & 3 & 3 & 3 & 0 & 9 \\
0 & 0 & 1 & 1 & 1 & 3
\end{array}\right] \stackrel{R_{1}+R_{2}}{R_{3}-3 R_{2}}\left[\begin{array}{lllll|l}
1 & 0 & 2 & 0 & 1 & 4 \\
0 & 1 & 1 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 3
\end{array}\right] \\
& R_{3} \leftrightarrow R_{4}\left[\begin{array}{lllll|l}
1 & 0 & 2 & 0 & 1 & 4 \\
0 & 1 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 1 & 1 & \begin{array}{c}
R_{1}-2 R_{3} \\
0 \\
0
\end{array} 0
\end{array} 0\right.
\end{aligned}
$$

It remains to interpret this result. The reduced matrix represents the linear system $x-$ $2 u-v=-2, y-v=0$, and $z+u+v=3$, which has the same solutions as the original system. We can easily solve this system for x, y, and z in terms of u and v, so we set $u=s$ and $v=t$ for parameters s and t to get the parametric representation of the set of solutions: $x=-2+u+v=-2+s+t, y=v=t, z=3-u-v=3-s-t, u=s$, and $v=t$. The vector-parametric form can be read off from these equations, coordinate by coordinate:

$$
\left[\begin{array}{l}
x \\
y \\
z \\
u \\
v
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
3 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

c. What are the rank and nullity of A? [1]

Solution. The reduced coefficient matrix in the solution to \mathbf{b} has three non-zero rows, so the rank of \mathbf{A} is 3 . Since \mathbf{A} has 5 columns, it follows by the rank-nullity law that the nullity of \mathbf{A} is $5-3=2$.
d. Without any further calculation, give a basis for the column space of A. [3]

Solution. The reduced coefficient matrix in the solution to \mathbf{b} has leading 1 s in its three non-zero rows in columns 1,2 , and 3 . The corresponding columns of the original matrix A form a basis for the column space of \mathbf{A}, namely:

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
3 \\
1
\end{array}\right]\right\}
$$

e. Without any further calculation, give a basis for the null space of \mathbf{A}, and explain why it is one. [4]

Solution. If we had done the reduction in \mathbf{b} with a right-hand side of all $0 \mathrm{~s}-$ i.e. done the calculation to find the null space of \mathbf{A} - we would have reached the same reduced matrix, except with a right-hand side column of all 0 s , resulting in the parametric solution

$$
\left[\begin{array}{l}
x \\
y \\
z \\
u \\
v
\end{array}\right]=s\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
1
\end{array}\right] .
$$

The vectors corresponding to each parameter then form a basis for the null space of \mathbf{A} :

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

3. Let $\mathbf{B}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & 1\end{array}\right]$.
a. Find all the eigenvalues of \mathbf{B}. [5]

Solution. First,

$$
\mathbf{B}-\lambda \mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 2 \\
0 & 2 & 1-\lambda
\end{array}\right] .
$$

Second,

$$
\begin{aligned}
|\mathbf{B}-\lambda \mathbf{I}| & =\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 2 \\
0 & 2 & 1-\lambda
\end{array}\right| \quad \text { [Now we expand along the first column.] } \\
& =(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right|-0\left|\begin{array}{cc}
0 & 1 \\
2 & 1-\lambda
\end{array}\right|+0\left|\begin{array}{cc}
0 & 1 \\
1-\lambda & 2
\end{array}\right| \\
& =(1-\lambda)((1-\lambda)(1-\lambda)-2 \cdot 2)-0+0 \\
& =(1-\lambda)\left(1-2 \lambda+\lambda^{2}-4\right) \\
& =(1-\lambda)\left(\lambda^{2}-2 \lambda-3\right) \\
& =(1-\lambda)(\lambda-3)(\lambda+1)
\end{aligned}
$$

Other means failing, one could use the quadratic formula at the last step: the roots of $\lambda^{2}-2 \lambda-3$ are, according to the formula,

$$
\lambda=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot(-3)}}{2 \cdot 1}=\frac{2 \pm \sqrt{16}}{2}=\frac{2 \pm 4}{2}=1 \pm 2=3 \text { or }-1 ;
$$

that is $\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda-(-1))=(\lambda-3)(\lambda+1)$.
Third, setting $|\mathbf{B}-\lambda \mathbf{I}|=(1-\lambda)(\lambda-3)(\lambda+1)=0$, it is clear that the eigenvalues of \mathbf{B} are $\lambda=1,3$, and -1 .
b. Find all the eigenvectors of \mathbf{B} corresponding to the eigenvalue $\lambda=1$. [5]

Solution. We need to find all the vectors \mathbf{u} such that $(\mathbf{B}-1 \mathbf{I}) \mathbf{x}=\mathbf{0}$, i.e. all the solutions to

$$
\left(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]-1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 2 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

We set up the corresponding augmented matrix and apply the Gauss-Jordan algorithm:

$$
\begin{aligned}
& {\left[\left.\begin{array}{lll|l}
0 & 0 & 1 \\
0 & 0 & 2 \\
0 & 2 & 0 & \left.\left\lvert\, \begin{array}{l}
0 \\
0 \\
0
\end{array}\right.\right] \underset{\substack{2 \\
\frac{1}{2} R_{2} \\
\frac{1}{2}}}{\Longrightarrow}\left[\left.\begin{array}{lll||l}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array} \right\rvert\,\right.
\end{array} \right\rvert\, \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \stackrel{R_{1}}{\Longrightarrow}\left[R_{3}\left[\begin{array}{lll||l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \underset{R_{3}-R_{2}}{\Longrightarrow}\left[\begin{array}{lll||l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right.
\end{aligned}
$$

This corresponds to the linear system $y=0$ and $z=0$; note that x can be anything, so we set it equal to the parameter t. Thus all the eigenvectors of \mathbf{B} corresponding to the eigenvalue $\lambda=1$ are given parametrically by

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \text { where } t \in \mathbb{R} .
$$

4. Find the inverse matrix, if it exists, of $\mathbf{C}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$. [10]

Solution. We set up the "super-augmented" matrix $[\mathbf{C} \mid \mathbf{I}]$ and attempt to reduce it to $\left[\mathbf{I} \mid \mathbf{C}^{-1}\right]$.

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \underset{R_{3}}{ } \longrightarrow R_{1}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
\begin{array}{l}
R_{2}
\end{array} \Longrightarrow R_{3}
\end{array} \begin{array}{llll|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{4}-R_{3}]{\Longrightarrow}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right]\right) .
$$

It follows that \mathbf{C} is invertible and $\mathbf{C}^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$.
5. Find the shortest distance from the point $(3,3,1)$ to the line given by the parametric equations $x=2, y=t$, and $z=2+t$. [9]
Solution. In vector-parametric form, the line is given by $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 2\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, so $(2,0,2)$ is a point on the line and $\mathbf{d}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is a direction vector for the line. The vector from $(2,0,2)$ to $(3,3,1)$ is $\mathbf{u}=\left[\begin{array}{l}3-2 \\ 3-0 \\ 1-2\end{array}\right]=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$. The distance from the point $(3,3,1)$ to the given line is the length of the component of \mathbf{u} which is perpendicular to \mathbf{d}, that is, $\left\|\mathbf{u}-\operatorname{proj}_{\mathbf{d}}(\mathbf{u})\right\|$.

Part II. Do any three of 6-11.
[Subtotal $=36 / 100]$
6. Use the properties of the vector operations and the dot product to verify that if \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{2}, then $(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=\|\mathbf{u}\|^{2}-\|\mathbf{v}\|^{2}$. [12]
7. Is $U=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x y=0\right\}$ a subspace of \mathbb{R}^{2} or not? Explain why or why not. If it is a subspace, what is its dimension? [12]
8. Find a linear equation giving the plane that is described by the parametric equations $x=1+2 t, y=2+s+t$, and $z=3+2 s$, where s and t are the parameters. [12]
9. Suppose \mathbf{A} is an $n \times n$ matrix such that $\mathbf{A x}=\mathbf{b}$ has a unique solution \mathbf{x}. Does the matrix equation $(\mathbf{X A})^{T} \mathbf{A}=\mathbf{A}+3 \mathbf{I}_{n}$ have a unique solution, too? Solve it if it does and explain why it does; if not, explain why it doesn't. [12]
10. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an invertible linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Find the associated matrix $\left[T^{-1}\right]=\mathbf{A}_{T^{-1}}$ of T^{-1}. [12]
11. Determine whether $\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right]$ is in $S=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ -4\end{array}\right],\left[\begin{array}{l}8 \\ 8 \\ 8\end{array}\right],\left[\begin{array}{l}4 \\ 0 \\ 6\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 5\end{array}\right]\right\}$ or not, and find a basis for S. [12]

$$
[\text { Total }=100]
$$

Part \odot. Bonus! The problem in this part goes round and round!
4π. Write an original little poem about linear algebra or mathematics in general. [2]

Have a great break! See you next term, I hope!

