
Mathematics 1350H – Linear algebra I: matrix algebra
Trent University, Fall 2009

Solutions to the Final Examination

Time: 3 hours Brought to you by Stefan B�lan�k.
Instructions: Show all your work. If in doubt about something, ask!
Aids: Calculator; annotated Formula for Success or 8.5′′× 11′′ aid sheet; ≤ 1011 neurons.

Part I. Do all of 1–5. [Subtotal = 64/100]

1. Consider the planes in R3 given by the equations x+ y +
√

2z = 6 and z = 0.

a. Sketch these planes. [4]

Solution. �

b. Find the angle between these planes. [3]

Solution. The angle between the planes is the angle between their normal vectors, which
we can read off the coefficients of their equations: x + y +

√
2z = 6 has normal vector

n =

 1
1√
2

 and z = 0x+0y+z = 0 has normal vector k =

 0
0
1

. If θ is the angle between

these vectors, and hence between the planes, then

cos(θ) =
n · k
‖n‖‖k‖

=
1 · 0 + 1 · 0 +

√
2 · 1√

12 + 12 +
√

2
2√

02 + 02 + 12
=

√
2

2
=

1√
2
,

so θ = 45◦ = π/2 rad. �

c. Find a parametric description of the line in which these planes intersect. [3]

Solution. �

2. Consider the following system of linear equations and its coefficient matrix A:

x − y + z − u + v = 1
x + 2y + 4z + 2u + v = 10

3y + 3z + 3u = 9
z + u + v = 3

and A =


1 −1 1 −1 1
1 2 4 2 1
0 3 3 3 0
0 0 1 1 1


Note that x = y = z = u = v = 1 satisfies all four equations.

a. Without any calculation, does this system have no solutions, just one solution,
or many solutions? Explain why. [2]

Solution. This system has many solutions. First, it has at least one solution because
x = y = z = u = v = 1 is a solution. Second, since the system has five variables and only
four equations, it cannot have just one solution. �
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b. Use the Gauss-Jordan method to find all the solutions, if any, of this system. [10]

Solution. We set up the “super-augmented” matrix for the system and apply the Gauss-
Jordan algorithm: 

1 −1 1 −1 1
1 2 4 2 1
0 3 3 3 0
0 0 1 1 1

∣∣∣∣∣∣∣
1
10
9
3

 R2 −R1

=⇒


1 −1 1 −1 1
0 3 3 3 0
0 3 3 3 0
0 0 1 1 1

∣∣∣∣∣∣∣
1
9
9
3


1
3R2

=⇒


1 −1 1 −1 1
0 1 1 1 0
0 3 3 3 0
0 0 1 1 1

∣∣∣∣∣∣∣
1
3
9
3


R1 +R2

=⇒
R3 − 3R2


1 0 2 0 1
0 1 1 1 0
0 0 0 0 0
0 0 1 1 1

∣∣∣∣∣∣∣
4
3
0
3


=⇒

R3 ↔ R4


1 0 2 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 0 0

∣∣∣∣∣∣∣
4
3
3
0


R1 − 2R3

R2 −R3

=⇒


1 0 0 −2 −1
0 1 0 0 −1
0 0 1 1 1
0 0 0 0 0

∣∣∣∣∣∣∣
−2
0
3
0


It remains to interpret this result. The reduced matrix represents the linear system x −
2u − v = −2, y − v = 0, and z + u + v = 3, which has the same solutions as the original
system. We can easily solve this system for x, y, and z in terms of u and v, so we set
u = s and v = t for parameters s and t to get the parametric representation of the set of
solutions: x = −2 + u + v = −2 + s + t, y = v = t, z = 3 − u − v = 3 − s − t, u = s,
and v = t. The vector-parametric form can be read off from these equations, coordinate
by coordinate: 

x
y
z
u
v

 =


−2
0
3
0
0

+ s


1
0
−1
1
0

+ t


1
1
−1
0
1

 �

c. What are the rank and nullity of A? [1]

Solution. The reduced coefficient matrix in the solution to b has three non-zero rows,
so the rank of A is 3. Since A has 5 columns, it follows by the rank-nullity law that the
nullity of A is 5− 3 = 2. �

d. Without any further calculation, give a basis for the column space of A. [3]

Solution. The reduced coefficient matrix in the solution to b has leading 1s in its three
non-zero rows in columns 1, 2, and 3. The corresponding columns of the original matrix
A form a basis for the column space of A, namely:


1
1
0
0

 ,

−1
2
3
0

 ,


1
4
3
1


 �
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e. Without any further calculation, give a basis for the null space of A, and explain
why it is one. [4]

Solution. If we had done the reduction in b with a right-hand side of all 0s – i.e. done
the calculation to find the null space of A – we would have reached the same reduced
matrix, except with a right-hand side column of all 0s, resulting in the parametric solution

x
y
z
u
v

 = s


1
0
−1
1
0

+ t


1
1
−1
0
1

 .

The vectors corresponding to each parameter then form a basis for the null space of A:


1
0
−1
1
0

 ,


1
1
−1
0
1


 �

3. Let B =

 1 0 1
0 1 2
0 2 1

.

a. Find all the eigenvalues of B. [5]

Solution. First,

B− λI =

 1 0 1
0 1 2
0 2 1

− λ
 1 0 0

0 1 0
0 0 1

 =

 1− λ 0 1
0 1− λ 2
0 2 1− λ

 .
Second,

|B− λI| =

∣∣∣∣∣∣
1− λ 0 1

0 1− λ 2
0 2 1− λ

∣∣∣∣∣∣ [Now we expand along the first column.]

= (1− λ)

∣∣∣∣ 1− λ 2
2 1− λ

∣∣∣∣− 0

∣∣∣∣ 0 1
2 1− λ

∣∣∣∣+ 0

∣∣∣∣ 0 1
1− λ 2

∣∣∣∣
= (1− λ) ((1− λ)(1− λ)− 2 · 2)− 0 + 0

= (1− λ)
(
1− 2λ+ λ2 − 4

)
= (1− λ)

(
λ2 − 2λ− 3

)
= (1− λ)(λ− 3)(λ+ 1)
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Other means failing, one could use the quadratic formula at the last step: the roots of
λ2 − 2λ− 3 are, according to the formula,

λ =
−(−2)±

√
(−2)2 − 4 · 1 · (−3)

2 · 1
=

2±
√

16

2
=

2± 4

2
= 1± 2 = 3 or − 1 ;

that is λ2 − 2λ− 3 = (λ− 3) (λ− (−1)) = (λ− 3)(λ+ 1).
Third, setting |B− λI| = (1− λ)(λ− 3)(λ+ 1) = 0, it is clear that the eigenvalues of

B are λ = 1, 3, and −1. �

b. Find all the eigenvectors of B corresponding to the eigenvalue λ = 1. [5]

Solution. We need to find all the vectors u such that (B−1I)x = 0, i.e. all the solutions
to  1 0 1

0 1 2
0 2 1

− 1

 1 0 0
0 1 0
0 0 1

xy
z

 =

 0 0 1
0 0 2
0 2 0

xy
z

 =

 0
0
0

 .
We set up the corresponding augmented matrix and apply the Gauss-Jordan algorithm: 0 0 1

0 0 2
0 2 0

∣∣∣∣∣∣
∣∣∣∣∣∣
0
0
0

 =⇒
1
2R2
1
2R3

 0 0 1
0 0 1
0 1 0

∣∣∣∣∣∣
∣∣∣∣∣∣
0
0
0


R1 ↔ R3

=⇒

 0 1 0
0 0 1
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
0
0
0

 =⇒
R3 −R2

 0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣
0
0
0


This corresponds to the linear system y = 0 and z = 0; note that x can be anything, so
we set it equal to the parameter t. Thus all the eigenvectors of B corresponding to the
eigenvalue λ = 1 are given parametrically byxy

z

 = t

 1
0
0

 , where t ∈ R. �.

4. Find the inverse matrix, if it exists, of C =


1 0 0 0
0 0 1 0
1 1 0 0
0 0 1 1

. [10]

Solution. We set up the “super-augmented” matrix [C | I ] and attempt to reduce it to[
I | C−1

]
. 

1 0 0 0
0 0 1 0
1 1 0 0
0 0 1 1

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =⇒
R3 −R1


1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 1

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1


R2 ↔ R3

=⇒


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

∣∣∣∣∣∣∣
1 0 0 0
−1 0 1 0
0 1 0 0
0 0 0 1

 =⇒

R4 −R3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣
1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 0 1


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It follows that C is invertible and C−1 =


1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 0 1

. �

5. Find the shortest distance from the point (3, 3, 1) to the line given by the parametric
equations x = 2, y = t, and z = 2 + t. [9]

Solution. In vector-parametric form, the line is given by

xy
z

 =

 2
0
2

 + t

 0
1
1

, so

(2, 0, 2) is a point on the line and d =

 0
1
1

 is a direction vector for the line. The vector

from (2, 0, 2) to (3, 3, 1) is u =

 3− 2
3− 0
1− 2

 =

 1
3
−1

. The distance from the point (3, 3, 1)

to the given line is the length of the component of u which is perpendicular to d, that is,
‖u− projd(u)‖. �

Part II. Do any three of 6–11. [Subtotal = 36/100]

6. Use the properties of the vector operations and the dot product to verify that if u and
v are vectors in R2, then (u + v)·(u− v) = ‖u‖2 − ‖v‖2. [12]

7. Is U =

{[
x
y

] ∣∣∣∣ xy = 0

}
a subspace of R2 or not? Explain why or why not. If it is

a subspace, what is its dimension? [12]

8. Find a linear equation giving the plane that is described by the parametric equations
x = 1 + 2t, y = 2 + s+ t, and z = 3 + 2s, where s and t are the parameters. [12]

9. Suppose A is an n × n matrix such that Ax = b has a unique solution x. Does the
matrix equation (XA)TA = A + 3In have a unique solution, too? Solve it if it does
and explain why it does; if not, explain why it doesn’t. [12]

10. Suppose T : R3 → R3 is an invertible linear transformation such that

T

 1
2
3

 =

 1
0
0

 , T
 0

1
2

 =

 0
1
0

 , and T

 0
0
1

 =

 0
0
1

 .
Find the associated matrix

[
T−1

]
= AT−1 of T−1. [12]

11. Determine whether

 2
0
4

 is in S = Span


 1
−1
2

 ,
−2

2
−4

 ,
 8

8
8

 ,
 4

0
6

 ,
 4

2
5

 or

not, and find a basis for S. [12]
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[Total = 100]

Part
⊙

. Bonus! The problem in this part goes round and round!

4π. Write an original little poem about linear algebra or mathematics in general. [2]

Have a great break!
See you next term, I hope!
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