Mathematics 1350 H - Linear algebra I: matrix algebra Trent University, Fall 2009

Assignment \#6

Due on Friday, 11 December, 2009.

A t0y un1verse

We're going to define our vectors using a different bunch of scalars, namely $\mathbb{Z}_{2}=\{0,1\}$, where + and \cdot are given by the following tables:

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

If you know about modular arithmetic, this is just addition and multiplication modulo 2 . You may take it on faith that this gives something algebraically well-behaved enough to be usable as a set of scalars.

The set of three-dimensional vectors we get from these scalars is

$$
\mathbb{Z}_{2}^{3}=\left\{\left.\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right] \right\rvert\, \text { each of } u, v, w \text { is } 0 \text { or } 1\right\}
$$

with addition of vectors and multiplication by scalars given by

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]+\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
a+r \\
b+s \\
c+t
\end{array}\right] \quad \text { and } \quad \alpha\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
\alpha \cdot u \\
\alpha \cdot v \\
\alpha \cdot w
\end{array}\right],
$$

using the addition and multiplication of scalars defined above.

1. How many vectors are there in \mathbb{Z}_{2}^{3} ? List them all! [2]
2. If $\mathbf{u}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is a vector of \mathbb{Z}_{2}^{3}, what is $-\mathbf{u}$? Why? [2]
3. How many subspaces does \mathbb{Z}_{2}^{3} have? List them all! [4]
4. Find an example of weird behaviour by the dot product of vectors in \mathbb{Z}_{2}^{3}. [2]
