Mathematics 1350H – Linear algebra I: matrix algebra

Trent University, Fall 2009

Assignment #5

Due on Friday, 27 November, 2009.

Computing determinants using the Gauss-Jordan algorithm

Given a square matrix \mathbf{A} , we can compute a number called the *determinant* of \mathbf{A} , usually denoted by $|\mathbf{A}|$ or $\det(\mathbf{A})$, that gives a lot of information about \mathbf{A} . For example, $|\mathbf{A}| \neq 0$ exactly when \mathbf{A}^{-1} exists. Determinants turn up in various parts of mathematics besides linear algebra. For example, they are needed when changing coordinates when integrating in multivariate calculus.

A common problem with how determinants are usually defined is that computing them is a lot of work unless ${\bf A}$ is a pretty small matrix. (Heck, it's a pain even for 3×3 matrices with the usual definition . . .) Here are some facts about determinants which let you compute the determinant of a matrix using the Gauss-Jordan algorithm. For large matrices, this is usually more efficient than using the standard definitions.

The determinant of an $n \times n$ matrix **A** satisfies the following rules:

- i. The identity matrix has determinant equal to 1, i.e. $|\mathbf{I}_n| = 1$.
- ii. If you exchange the ith and jth row of **A** to get the matrix **B**, then $|\mathbf{B}| = -|\mathbf{A}|$.
- iii. If you multiply the ith row of **A** by a constant c to get the matrix **C**, then $|\mathbf{C}| = c|\mathbf{A}|$.
- iv. If $i \neq j$ and you add any multiple of the jth row of **A** to the ith row of **A** to get the matrix **D**, then $|\mathbf{D}| = |\mathbf{A}|$.
- v. Taking the transpose of **A** doesn't change the determinant, i.e. $|\mathbf{A}^T| = |\mathbf{A}|$.

(This collection of rules could be used as the definition of the determinant of a matrix.)

- 1. Why are rules ii-iv true for the columns of an $n \times n$ matrix as well as the rows? [2]
- **2.** Use rules i-v and **1** to find the determinant of an $n \times n$ matrix **A** if:
 - **a.** A has a column or a row of zeros. [2]
 - **b.** A has two equal columns or two equal rows. [1]
 - **c. A** has rank less than n. [1]
- 4. Use the Gauss-Jordan method to put each of the matrices below in reduced rowechelon form and then apply what you have learned above to use this computation to find their determinants.

a.
$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
 [1] **b.** $\mathbf{B} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 3 & 3 & 15 \end{bmatrix}$ [3]