Mathematics 1350H - Linear algebra I: matrix algebra
 Trent University, Fall 2009
 Assignment \#2
 Due on Friday, 9 August, 2009

Objection to projection is a basis for dejection!

The key to what follows is the following idea. Recall (from class and $\S 1.2$) that the component of a vector \mathbf{v} parallel to a (non-zero) vector \mathbf{u} is the projection of \mathbf{v} onto \mathbf{u} :

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Recall further that if you take away the component of \mathbf{v} which is parallel to \mathbf{u} away from \mathbf{v}, the component that is left is orthogonal to \mathbf{u}.

1. Suppose \mathbf{v} and $\mathbf{u} \neq \mathbf{0}$ are vectors of the same dimension. Verify that $\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ is orthogonal to \mathbf{u}. [2]
Hint: Use the dot product!
Now let $S=\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$ be a set of four vectors in 4-dimensional space. We will modify this set of vectors to make it nicer in some respects.
2. Use the idea in $\mathbf{1}$ to modify the second vector in S to make it orthogonal to the first vector in S. [2]
3. Modify the third vector in S to make it orthogonal to both the first and second vectors in S. [2]
4. Modify the fourth vector in S to make it orthogonal to all of the first three vectors in S. [1]
5. Further modify all of your modified vectors from 2-4 to have length one. [1]
6. What might your final collection of modified vectors from $\mathbf{5}$ be good for? [2]
