Trent University

MATH 1350H Test

3 November, 2008
Time: 50 minutes

Name:

Solutions
Student Number:

Question Mark

Total

Instructions

- Show all your work. Legibly!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator, and either (both sides of) one 8.5×11 aid sheet or a copy (annotated as you like) of Formula for Success.

1. Consider the points $(2,0,0),(0,2,0)$, and $(0,0,2)$ in \mathbb{R}^{3}.
a. Find a parametric description of the line passing through the first two points. [3]
b. Find a linear equation describing the plane passing through all three points. [4]
c. Sketch the part of the plane in \mathbf{b} that lies in the first octant. [3]
a. We'll use $(2,0,0)$ as the base point, and the vector from it to $(0,2,0)$ as the direction vector. The direction vector is therefore $\left[\begin{array}{l}0-2 \\ 2-0 \\ 0-0\end{array}\right]=\left[\begin{array}{c}-2 \\ 2 \\ 0\end{array}\right]$, and the parametric representation of the line is $x=2-2 t, y=0+2 t=2 t$, and $z=0+0 t=0$, where t is the parameter.
b. We need a vector normal to the plane and we'll get it from the cross-product of two vectors parallel to the plane. For these we'll use the vectors from $(2,0,0)$ to the other two given points. One of these we worked out in part a, and the other is $\left[\begin{array}{l}0-2 \\ 0-0 \\ 2-0\end{array}\right]=\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right]$. Their cross-product is

$$
\begin{aligned}
{\left[\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right] \times\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right] } & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 2 & 0 \\
-2 & 0 & 2
\end{array}\right|=\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
-2 & 0 \\
-2 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
-2 & 2 \\
-2 & 0
\end{array}\right| \mathbf{k} \\
& =(2 \cdot 2-0 \cdot 0) \mathbf{i}-((-2) \cdot 2-(-2) \cdot 0) \mathbf{j}+((-2) \cdot 0-2 \cdot(-2)) \mathbf{k} \\
& =4 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right]
\end{aligned}
$$

so the plane will have an equation of the form $4 x+4 y+4 z=d$. To determine d, we simply plug the coordinates of one of the given points, say $(2,0,0)$, into the equation above and solve for $d, d=4 \cdot 2+4 \cdot 0+4 \cdot 0=8$. Thus an equation of the plane is $4 x+4 y+4 z=8$. Those who like small numbers can divide both sides by 4 and use $x+y+z=2$ instead.
c. We plot the intercepts of the plane, which conveniently happen to be the given points, and join them up:

2. Use the Gauss-Jordan method to find the inverse of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & -1 & 10\end{array}\right]$, if one exists. [10]

We row-reduce the "super-augmented" matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 4 & 0 & 1 & 0 \\
1 & -1 & 10 & 0 & 0 & 1
\end{array}\right]} \\
& \begin{array}{c}
\Longrightarrow \\
R_{2}-2 R_{1} \\
R_{3}-R_{1}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & -3 & 7 & -1 & 0 & 1
\end{array}\right] \\
& \begin{array}{c}
R_{1}-2 R_{2} \\
R_{3}+3 R_{2}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 0 & 7 & 5 & -2 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 3 & 1
\end{array}\right] \\
& \begin{array}{c}
R_{1}-7 R_{3} \\
R_{2}+2 R_{3}
\end{array} \quad\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 54 & -23 & -7 \\
0 & 1 & 0 & -16 & 7 & 2 \\
0 & 0 & 1 & -7 & 3 & 1
\end{array}\right]
\end{aligned}
$$

It follows that the given matrix does have an inverse, and that

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 4 \\
1 & -1 & 10
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
54 & -23 & -7 \\
-16 & 7 & 2 \\
-7 & 3 & 1
\end{array}\right]
$$

3. Do any two of parts a, b, c. $[10=2 \times 5$ each $]$
a. Suppose \mathbf{B} is an $n \times n$ matrix which is invertible and for which $\mathbf{B}^{2}=\mathbf{B}$. Show that $\mathbf{B}=\mathbf{I}_{n}$, the $n \times n$ identity matrix.
b. Find the (shortest) distance from the point $P=(1,0,0)$ to the line ℓ given by the parametric equations $x=1, y=1-2 t$, and $z=1+3 t$.
c. Can there be four planes in \mathbb{R}^{3} which are each perpendicular to the other three? If so, give an example; if not, explain why not.
a. \mathbf{B}^{-1} exists, so

$$
\mathbf{B B}=\mathbf{B}^{2}=\mathbf{B} \quad \Longrightarrow \quad \mathbf{B}^{-1} \mathbf{B B}=\mathbf{B}^{-1} \mathbf{B} \quad \Longrightarrow \quad \mathbf{I}_{n} \mathbf{B}=\mathbf{I}_{n} \quad \Longrightarrow \quad \mathbf{B}=\mathbf{I}_{n},
$$

as desired.
b. The direction vector of the line is $\mathbf{d}=\left[\begin{array}{c}0 \\ -2 \\ 3\end{array}\right]$, and $t=0$ gives us the point $(1,1,1)$ on the line. The vector joining the point $P=(1,0,0)$ to this point is $\mathbf{a}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, and the distance from $P=(1,0,0)$ to the line is the part of a which is perpendicular to \mathbf{d}. We get this part by subtracting the projection of \mathbf{a} onto \mathbf{d} from \mathbf{a} :

$$
\mathbf{a}-\operatorname{proj}_{\mathbf{d}}(\mathbf{a})=\mathbf{a}-\frac{\mathbf{a} \cdot \mathbf{d}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right]}{\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right]}\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{1}{13}\left[\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{15}{13} \\
\frac{10}{13}
\end{array}\right]
$$

The distance between the point and the line is the length of this vector, namely:

$$
\sqrt{0^{2}+\left(\frac{15}{13}\right)^{2}+\left(\frac{10}{13}\right)^{2}}=\sqrt{\frac{325}{169}}=\sqrt{\frac{25}{13}}=\frac{5}{\sqrt{13}} .
$$

c. If there were four planes in \mathbb{R}^{3} with each one perpendicular to the other three, we would have four vectors in \mathbb{R}^{3} - namely the normal vectors of the planes - with each one perpendicular to the other three. This cannot happen, because the maximum number of vectors which are all perpendicular to each other in \mathbb{R}^{3} is the dimension of \mathbb{R}^{3}, namely three. Hence there are no such planes.
4. Let $\mathbf{a}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{c}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{d}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$. Do one of parts \triangle or \square. [10]
\triangle. Determine whether \mathbf{d} is in $\operatorname{Span}\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ or not.
\square. Determine whether $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d} are linearly independent or not.
$\triangle . \mathbf{d}$ is in $\operatorname{Span}\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ if there exist x, y, and z such that $x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{d}$. We try to solve the corresponding system of linear equations using the Gauss-Jordan method:

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \underset{2}{\Longrightarrow} \quad R_{4} \quad\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \quad \underset{\substack{ \\
R_{3}-R_{1} \\
R_{4}-R_{1}}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1
\end{array}\right]} \\
& \begin{array}{c}
\underset{\substack{2 \\
R_{3}-R_{2} \\
R_{4}-R_{2}}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 1 & -2
\end{array}\right] \quad \Longrightarrow \quad\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}
\end{aligned}
$$

Thus $\mathbf{a}+\mathbf{b}-2 \mathbf{c}=\mathbf{d}$, so \mathbf{d} is in $\operatorname{Span}\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$.
\triangle. The vectors are linearly independent if the only way to get $p \mathbf{a}+q \mathbf{b}+r \mathbf{c}+s \mathbf{d}=\mathbf{0}$ is to have $p=q=r=s=0$. We try to solve the corresponding system of linear equations using the Gauss-Jordan method:

$$
\begin{aligned}
& {\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right] \quad \underset{R_{2}}{\Longrightarrow} \quad\left[R_{4}\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right] \quad \underset{R_{3}-R_{1}}{\Longrightarrow}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 & 0
\end{array}\right]\right.} \\
& \left.\begin{array}{c}
\underset{3}{ }-R_{2} \\
R_{4}-R_{2}
\end{array}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2 & 0
\end{array}\right] \quad \Longrightarrow \quad \begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

It follows that there are infinitely many solutions (you could let s be any real number and then solve for p, q, and r), and so the four vectors are not linearly independent, i.e. they are linearly dependent.

$$
[\text { Total }=40]
$$

