Mathematics 1350H — Linear algebra I: matrix algebra
TRENT UNIVERSITY, Fall 2008

Solutions to Assignment #35

Determinants the Gauss-Jordan way

Given a square matrix A, we can compute a number called the determinant of A,
usually denoted by |A| or det(A), that gives a lot of information about A. For example,
|A| # 0 exactly when A~1 exists. A common problem with how determinants are usually
defined is that computing them is a lot of work unless A is a pretty small matrix. (Heck,
it’s a pain even for 3 x 3 matrices with the usual definition ... ) Here are some facts about
determinants which let you compute the determinant of a matrix using the Gauss-Jordan
method:

The determinant of an n x n matrix A satisfies the following rules:

i. The identity matrix has determinant equal to 1, i.e. |L,| = 1.

ii. If you exchange the ith and jth row of A to get the matrix B, then |B| = —|A].
1ie. If you multiply the ith row of A by a constant ¢ to get the matrix C, then
C| = c[A].

iv. If you add a row vector d to the ith row of A to get the matrix D, then |D| =
|A| +|A;.al|, where A; q is the matrix A with its ith row replaced by d.

v. Taking the transpose of A doesn’t change the determinant. That is, |[AT| = |A|.

If you really wanted to, by the way, you could actually use this collection of rules as the
definition of the determinant of a matrix.

1. Rules i — v are true for the columns of A as well as the rows. Why? [2/

Solution. Rule v is the reason!. Applying the operations mentioned in rules it — v to
the columns of A corresponds to applying them to the rows of AT. Rule v tells us that
IB| = |B”| for any matrix B, so the effect on |A]| of column operations on A is exactly
the same as the effect on |AT| of the corresponding row operations on A7, Hence rules ii
— 4v work for columns as well as rows. B

2. Suppose we get the matrix E by adding a multiple of row 7 of A to row j of A, leaving
the other rows alone. Explain why |E| = |A|. [2]

Solution. Suppose we obtain E by adding ¢ times row i of A to row j of A. (That

is, A R:>R E.) Suppose C is the matrix A with row j replaced by ¢ times row i, and
jtcR;

B is the matrix A with row j replaced by row i. Then |E| = |A| + |C| (by rule iv) =
|A| + ¢|B| (by rule ii7). Since |B| = 0 by 3b, it follows that |E| = |A|. (Note that the
solution to 3b does not rely on 2, so we are not indulging in circular reasoning.) l

. when rows are not in season!



3. Use rules i — v, as well as 1 and 2, to compute |A| if:
a. A has a column or a row of zeros. [1/

Solution. Suppose A is an n X n matrix whose ith row, call it r;, is all zeros. Note that
in this case r; = Or;, so, by rule iii, |A| = 0|A| = 0.

If A has a column of zeros instead, then AT must have a row of zeros, so |A| = |AT| =
0, by the above and rule v (or by question 1). B

b. A has two equal columns or two equal rows. [1]

Solution. Suppose A is a matrix whose ith and jth rows are the same (with i # j, of
course). Then A = A so, by rule i, |A| = —|A|. The only number which is equal to

its own negative is 0, so it must be the case that |A| = 0.
By problem 1, it also follows that |A| = 0 if A has two equal columns. B

c. A= [g’ é] /1]

Solution. Gauss-Jordan reduction, hai/

3 43R [1 3] = [1 5] = [1 3]Ri—3R[1 0
5 6] = |5 6] Ry—bHR1 |0 —2| —3R, |0 — 0 1

Now we track how the determinant changed in the course of these operations until we
reached the identity matrix:
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Solution. Following the same steps used in 3c gives us:
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(We are implicitly assuming here that none of p, ¢, and ps — gr is 0.) Now we track how

the determinant Changed until we reached the identity matrix:
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It follows that |A| = ps — qr, so long as none of p, ¢, and ps — qr is 0. If p # 0 but
ps — qr = 0, we reach a row of all zeros after two steps, and it is easy to see that in this
case |A| =0 =ps—qr. If p # 0 and ps — gr # 0 but ¢ = 0, we reach the identity matrix
at the next-to-last step, and it is easy to see that in this case we still get |A| = ps — qr.
The cases where p = 0 are left to the reader. (If r = 0 too, it’s easy; otherwise, swap rows
first and apply the analysis above ... ) B
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4. Use the Gauss-Jordan method to put the matrix A = |3 5 | in reduced row-
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t

echelon form. Apply what you have learned above to use this computation to deter-
mine |A[. [2]

Solution. First, we use the Gauss-Jordan method to put the matrix in reduced echelon
form, one step at a time:

0 1 2]|Ri <R [3 4 5| iR [1 5§ 2 1 4 8
3 45 = 01 2 =01 2 = 0o 1 2
6 7 0 6 7 0 6 7 0] Rg—6R; [0 —1 -10
(1 3 2] Ri—3R[1 0 -1 10 -1
= 01 2 = 01 2| = |01 2
R3+ Ry |0 0 -8 0 0 —8] —4R3 [0 0 1
Ri+Rs [1 0 0 = 1 00
= 0 1 2| Rob—2R3 |0 1 O
0 0 1 001

Second, we track how the determinant changed in the course of these operations until
we reached the identity matrix:

«— Ro i 1 1 — 1 1 2 1 1—é 2 1
A1 A A (2] () et e et g Ml )
(i) (ig1) \ 3 (2) 3 2 3 (2) 3

-1 1 1 1 _ 1
(#i1) 8 3 (2) 24 (2) 24 (1)

Solving for |A| at the very end gives |A| =24. B



