
Mathematics 1350H – Linear algebra I: matrix algebra
Trent University, Fall 2008

Solutions to Assignment #5

Determinants the Gauss-Jordan way

Given a square matrix A, we can compute a number called the determinant of A,
usually denoted by |A| or det(A), that gives a lot of information about A. For example,
|A| 6= 0 exactly when A−1 exists. A common problem with how determinants are usually
defined is that computing them is a lot of work unless A is a pretty small matrix. (Heck,
it’s a pain even for 3×3 matrices with the usual definition . . . ) Here are some facts about
determinants which let you compute the determinant of a matrix using the Gauss-Jordan
method:

The determinant of an n× n matrix A satisfies the following rules:
i. The identity matrix has determinant equal to 1, i.e. |In| = 1.
ii. If you exchange the ith and jth row of A to get the matrix B, then |B| = −|A|.
iii. If you multiply the ith row of A by a constant c to get the matrix C, then
|C| = c|A|.

iv. If you add a row vector d to the ith row of A to get the matrix D, then |D| =
|A|+ |Ai,d|, where Ai,d is the matrix A with its ith row replaced by d.

v. Taking the transpose of A doesn’t change the determinant. That is, |AT | = |A|.

If you really wanted to, by the way, you could actually use this collection of rules as the
definition of the determinant of a matrix.

1. Rules ii – iv are true for the columns of A as well as the rows. Why? [2]

Solution. Rule v is the reason1. Applying the operations mentioned in rules ii – iv to
the columns of A corresponds to applying them to the rows of AT . Rule v tells us that
|B| = |BT | for any matrix B, so the effect on |A| of column operations on A is exactly
the same as the effect on |AT | of the corresponding row operations on AT . Hence rules ii
– iv work for columns as well as rows. �

2. Suppose we get the matrix E by adding a multiple of row i of A to row j of A, leaving
the other rows alone. Explain why |E| = |A|. [2]

Solution. Suppose we obtain E by adding c times row i of A to row j of A. (That
is, A =⇒

Rj+cRi

E.) Suppose C is the matrix A with row j replaced by c times row i, and

B is the matrix A with row j replaced by row i. Then |E| = |A| + |C| (by rule iv) =
|A| + c|B| (by rule iii). Since |B| = 0 by 3b, it follows that |E| = |A|. (Note that the
solution to 3b does not rely on 2, so we are not indulging in circular reasoning.) �

1 . . . when rows are not in season!
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3. Use rules i – v , as well as 1 and 2, to compute |A| if:

a. A has a column or a row of zeros. [1]

Solution. Suppose A is an n× n matrix whose ith row, call it ri, is all zeros. Note that
in this case ri = 0ri, so, by rule iii , |A| = 0|A| = 0.

If A has a column of zeros instead, then AT must have a row of zeros, so |A| = |AT | =
0, by the above and rule v (or by question 1). �

b. A has two equal columns or two equal rows. [1]

Solution. Suppose A is a matrix whose ith and jth rows are the same (with i 6= j, of
course). Then A =⇒

Ri↔Ri

A, so, by rule ii , |A| = −|A|. The only number which is equal to

its own negative is 0, so it must be the case that |A| = 0.
By problem 1, it also follows that |A| = 0 if A has two equal columns. �

c. A =
[

3 4
5 6

]
. [1]

Solution. Gauss-Jordan reduction, hai![
3 4
5 6

]
1
3R1

=⇒

[
1 4

3
5 6

]
=⇒

R2 − 5R1

[
1 4

3
0 − 2

3

]
=⇒
− 3

2R2

[
1 4

3
0 1

]
R1 − 4

3R2

=⇒

[
1 0
0 1

]
Now we track how the determinant changed in the course of these operations until we
reached the identity matrix:

|A|
1
3 R1
=⇒
(iii)

1
3
|A| R2−5R1=⇒

(2)

1
3
|A|

− 3
2 R2

=⇒
(iii)

−3
2

(
1
3
|A|
)

= −1
2
|A|

R1− 4
3 R2

=⇒
(2)

−1
2
|A| = |I2| =

(i)
1

It follows that |A| = 1÷
(
− 1

2

)
= −2. �

d. A =
[

p q
r s

]
. [1]

Solution. Following the same steps used in 3c gives us:[
p q
r s

]
1
pR1

=⇒

[
1 q

p
r s

]
=⇒

R2 − rR1

[
1 q

p

0 ps−qr
p

]
=⇒
p

ps−qrR2

[
1 q

p
0 1

]
R1 − p

q R2

=⇒

[
1 0
0 1

]
(We are implicitly assuming here that none of p, q, and ps − qr is 0.) Now we track how
the determinant changed until we reached the identity matrix:

|A|
1
p R1
=⇒
(iii)

1
p
|A| R2−rR1=⇒

(2)

1
p
|A|

p
ps−qr R2

=⇒
(iii)

p

ps− qr

(
1
p
|A|
)

=
1

ps− qr
|A|

R1− p
q R2

=⇒
(2)

1
ps− qr

|A| = |I2| =
(i)

1

It follows that |A| = ps − qr, so long as none of p, q, and ps − qr is 0. If p 6= 0 but
ps − qr = 0, we reach a row of all zeros after two steps, and it is easy to see that in this
case |A| = 0 = ps− qr. If p 6= 0 and ps− qr 6= 0 but q = 0, we reach the identity matrix
at the next-to-last step, and it is easy to see that in this case we still get |A| = ps − qr.
The cases where p = 0 are left to the reader. (If r = 0 too, it’s easy; otherwise, swap rows
first and apply the analysis above . . . ) �
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4. Use the Gauss-Jordan method to put the matrix A =

 0 1 2
3 4 5
6 7 0

 in reduced row-

echelon form. Apply what you have learned above to use this computation to deter-
mine |A|. [2]

Solution. First, we use the Gauss-Jordan method to put the matrix in reduced echelon
form, one step at a time: 0 1 2

3 4 5
6 7 0

R1 ↔ R2

⇒

 3 4 5
0 1 2
6 7 0

 1
3R1

⇒

 1 4
3

5
3

0 1 2
6 7 0

 ⇒
R3 − 6R1

 1 4
3

5
3

0 1 2
0 −1 −10


⇒

R3 + R2

 1 4
3

5
3

0 1 2
0 0 −8

 R1 − 4
3R2

⇒

 1 0 −1
0 1 2
0 0 −8

 ⇒
− 1

8R3

 1 0 −1
0 1 2
0 0 1


R1 + R3

⇒

 1 0 0
0 1 2
0 0 1

 ⇒
R2 − 2R3

 1 0 0
0 1 0
0 0 1


Second, we track how the determinant changed in the course of these operations until

we reached the identity matrix:

|A| R1↔R2=⇒
(ii)

−|A|
1
3 R1
=⇒
(iii)

(
1
3

)
(−|A|) R3−6R1=⇒

(2)
−1

3
|A| R3+R2=⇒

(2)
−1

3
|A|

R1− 4
3 R2

=⇒
(2)

−1
3
|A|

− 1
8 R3

=⇒
(iii)

(
−1

8

)(
−1

3
|A|
)

R1+R3=⇒
(2)

1
24
|A| R2−2R3=⇒

(2)

1
24
|A| = |I3| =

(i)
1

Solving for |A| at the very end gives |A| = 24. �
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