Mathematics 1350H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2008

Solutions to Assignment #4 A quadratic equation

1. Find all the matrices $\mathbf{X} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfying the equation $\mathbf{X}^2 - 2\mathbf{X} + \mathbf{I}_2 = \mathbf{0}$. [10] Note: $\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ satisfies the equation, but it's not the only one that does. For example, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ does so too.

Solution. Observe that $\mathbf{X}^2 - 2\mathbf{X} + \mathbf{I}_2 = (\mathbf{X} - \mathbf{I}_2)^2$. If $\mathbf{X} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $(\mathbf{X} - \mathbf{I}_2)^2 = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)^2 = \begin{bmatrix} a - 1 & b \\ c & d - 1 \end{bmatrix}^2$ $= \begin{bmatrix} (a - 1)^2 + bc & b(a + d - 2) \\ c(a + d - 2) & (d - 1)^2 + bc \end{bmatrix}$.

Finding the solutions to the equation $(\mathbf{X} - \mathbf{I}_2)^2 = \mathbf{X}^2 - 2\mathbf{X} + \mathbf{I}_2 = \mathbf{0}$ therefore boils down to finding the solutions of the following system of (non-linear!) equations:

$$(a-1)^{2} + bc = 0$$

$$(d-1)^{2} + bc = 0$$

$$b(a+d-2) = 0$$

$$c(a+d-2) = 0$$

To get a handle on finding all the solutions to this system of equations, we divide it up into manageable cases and then conquer each one.

Case I - bc = 0: Note that bc = 0 exactly when b = 0, c = 0, or both. In this case, the first two equations in the system imply that $(a - 1)^2 = (d - 1)^2 = 0$, so a - 1 = d - 1 = 0, *i.e.* a = d = 1. Since it follows from this that a + d - 2 = 0, the last two equations in the system will be satisfied even if one of b or c is 0.

This gives us two families of infinitely many solutions each:

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}$$
$$b \in \mathbb{R} \qquad c \in \mathbb{R}$$

Case $II - bc \neq 0$: First, note that $bc \neq 0$ exactly when $b \neq 0$ and $c \neq 0$. It follows from the last two equations in the system that a + d - 2 = 0.

Second, in this case the first two equations tell us less than when bc = 0, as all we can conclude is that $(a-1)^2 = (d-1)^2$. From this it follows that either a-1 = d-1 or a-1 = -(d-1) = 1-d, *i.e.* a = d or a+d = 2. We analyze these subcases separately: Subcase II.i - a = d: We already know that in Case II, a + d - 2 = 0. If a = d as well, we must have a = d = 1. However, the first two equations in the system then imply that $(1-1)^2 + bc = 0 = (1-1)^2 + bc$, so bc = 0. This is a contradiction to our being in Case II at all, so this subcase does not lead to any new solutions.

Subcase II.ii -a + d = 2: In this subcase, all we know about a and d is what a + d - 2 = 0 already told us. We can solve for d in terms of a, d = 2 - a, or vice versa, a = 2 - d, but that's as far as that goes. Note that the argument showing that Subcase II.i leads to a contradiction shows us that here we need to have $a \neq 1$ to avoid contradicting $bc \neq 0$. (Similarly, $d \neq 1$.)

Given $a \neq 1$ and $b \neq 0$, we can use the first equation in the system to solve for c: $c = -\frac{(a-1)^2}{b}$. Note that this means that $c \neq 0$ and that c and b must have opposite signs. This gives us one more infinite family of solutions:

$$\begin{bmatrix} a & b\\ -\frac{(a-1)^2}{b} & 2-a \end{bmatrix}$$

 $a \neq 1 \text{ and } b \neq 0$

Since we have exhausted all the logical possibilities between our various (sub)cases, we have found all the possible solutions for $\mathbf{X} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfying $\mathbf{X}^2 - 2\mathbf{X} + \mathbf{I}_2 = \mathbf{0}$.