Mathematics 1350 H - Linear algebra I: matrix algebra Trent University, Fall 2008

Solutions to Assignment \#4

A quadratic equation

1. Find all the matrices $\mathbf{X}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ satisfying the equation $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{0}$. [10]

Note: $\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ satisfies the equation, but it's not the only one that does. For example, $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ does so too.
Solution. Observe that $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2}$. If $\mathbf{X}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then

$$
\begin{aligned}
\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2} & =\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)^{2}=\left[\begin{array}{cc}
a-1 & b \\
c & d-1
\end{array}\right]^{2} \\
& =\left[\begin{array}{ll}
(a-1)^{2}+b c & b(a+d-2) \\
c(a+d-2) & (d-1)^{2}+b c
\end{array}\right]
\end{aligned}
$$

Finding the solutions to the equation $\left(\mathbf{X}-\mathbf{I}_{2}\right)^{2}=\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{0}$ therefore boils down to finding the solutions of the following system of (non-linear!) equations:

$$
\begin{aligned}
(a-1)^{2}+b c & =0 \\
(d-1)^{2}+b c & =0 \\
b(a+d-2) & =0 \\
c(a+d-2) & =0
\end{aligned}
$$

To get a handle on finding all the solutions to this system of equations, we divide it up into manageable cases and then conquer each one.
Case $I-b c=0$: Note that $b c=0$ exactly when $b=0, c=0$, or both. In this case, the first two equations in the system imply that $(a-1)^{2}=(d-1)^{2}=0$, so $a-1=d-1=0$, i.e. $a=d=1$. Since it follows from this that $a+d-2=0$, the last two equations in the system will be satisfied even if one of b or c is 0 .

This gives us two families of infinitely many solutions each:

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]} & {\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right]} \\
b \in \mathbb{R} & c \in \mathbb{R}
\end{array}
$$

Case $I I-b c \neq 0$: First, note that $b c \neq 0$ exactly when $b \neq 0$ and $c \neq 0$. It follows from the last two equations in the system that $a+d-2=0$.

Second, in this case the first two equations tell us less than when $b c=0$, as all we can conclude is that $(a-1)^{2}=(d-1)^{2}$. From this it follows that either $a-1=d-1$ or $a-1=-(d-1)=1-d$, i.e. $a=d$ or $a+d=2$. We analyze these subcases separately: Subcase II. $i-a=d$: We already know that in Case II, $a+d-2=0$. If $a=d$ as well, we must have $a=d=1$. However, the first two equations in the system then imply that $(1-1)^{2}+b c=0=(1-1)^{2}+b c$, so $b c=0$. This is a contradiction to our being in Case II at all, so this subcase does not lead to any new solutions.
Subcase II.ii $-a+d=2$: In this subcase, all we know about a and d is what $a+d-2=0$ already told us. We can solve for d in terms of $a, d=2-a$, or vice versa, $a=2-d$, but that's as far as that goes. Note that the argument showing that Subcase II.i leads to a contradiction shows us that here we need to have $a \neq 1$ to avoid contradicting $b c \neq 0$. (Similarly, $d \neq 1$.)

Given $a \neq 1$ and $b \neq 0$, we can use the first equation in the system to solve for c : $c=-\frac{(a-1)^{2}}{b}$. Note that this means that $c \neq 0$ and that c and b must have opposite signs. This gives us one more infinite family of solutions:

$$
\begin{gathered}
{\left[\begin{array}{cc}
a & b \\
-\frac{(a-1)^{2}}{b} & 2-a
\end{array}\right]} \\
a \neq 1 \text { and } b \neq 0
\end{gathered}
$$

Since we have exhausted all the logical possibilities between our various (sub)cases, we have found all the possible solutions for $\mathbf{X}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ satisfying $\mathbf{X}^{2}-2 \mathbf{X}+\mathbf{I}_{2}=\mathbf{0}$.

