Mathematics 1350 H - Linear algebra I: matrix algebra Trent University, Fall 2008

Solutions to Assignment \#2

Shifty business

Suppose $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is an n-place row vector. The left shift of a by k places (where $0 \leq k<n$) is the vector $\sigma_{k}(\mathbf{a})=\left[a_{k+1}, a_{k+2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{k}\right]$. For example, here is a left shift by 2 places of a 6 -place vector:

$$
\sigma_{2}([3,-1,0,5,1,-2])=[0,5,1,-2,3,-1]
$$

Note that for any vector $\mathbf{a}, \sigma_{0}(\mathbf{a})=\mathbf{a}$.

1. Explain why $\sigma_{k}(s \mathbf{a})=s \sigma_{k}(\mathbf{a})$ for any n-place vector \mathbf{a}, integer k with $0 \leq k<n$, and scalar s. [1.5]
Solution. Suppose $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is an n-place vector, s is a scalar, and k is an integer with $0 \leq k<n$. Then

$$
\begin{aligned}
\sigma_{k}(s \mathbf{a}) & =\sigma_{k}\left(s\left[a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right]\right) \\
& =\sigma_{k}\left(\left[s a_{1}, s a_{2}, \ldots, s a_{k}, s a_{k+1}, \ldots, s a_{n}\right]\right) \\
& =\left[s a_{k+1}, \ldots, s a_{n}, s a_{1}, s a_{2}, \ldots, s a_{k}\right] \\
& =s\left[a_{k+1}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{k}\right] \\
& =s \sigma_{k}\left(\left[a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right]\right) \\
& =s \sigma_{k}(\mathbf{a})
\end{aligned}
$$

as desired.
2. Explain why $\sigma_{k}(\mathbf{a}+\mathbf{b})=\sigma_{k}(\mathbf{a})+\sigma_{k}(\mathbf{b})$ for any n-place vectors a and \mathbf{b}, and any integer k with $0 \leq k<n$. [1.5]
Solution. Suppose $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ are n-place vectors and k is an integer with $0 \leq k<n$. Then

$$
\begin{aligned}
\sigma_{k}(\mathbf{a}+\mathbf{b}) & =\sigma_{k}\left(\left[a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right]+\left[b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right]\right) \\
& =\sigma_{k}\left(\left[a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{k}+b_{k}, a_{k+1}+b_{k+1}, \ldots, a_{n}+b_{n}\right]\right) \\
& =\left[a_{k+1}+b_{k+1}, \ldots, a_{n}+b_{n}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{k}+b_{k}\right] \\
& =\left[a_{k+1}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{k}\right]+\left[b_{k+1}, \ldots, b_{n}, b_{1}, b_{2}, \ldots, b_{k}\right] \\
& =\sigma_{k}\left(\left[a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right]\right)+\sigma_{k}\left(\left[b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right]\right) \\
& =\sigma_{k}(\mathbf{a})+\sigma_{k}(\mathbf{b})
\end{aligned}
$$

as desired.
3. Is it true that $\sigma_{k}\left(\sigma_{\ell}(\mathbf{a})\right)=\sigma_{k+\ell}(\mathbf{a})$? Explain why or why not. [2]

Solution. It is true. Suppose $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is an n-place vector, and suppose that k and ℓ are integers such that each of k, ℓ, and $k+\ell$ is ≥ 0 and $<n$. Then:

$$
\begin{aligned}
\sigma_{k}\left(\sigma_{\ell}(\mathbf{a})\right) & =\sigma_{k}\left(\sigma_{\ell}\left(\left[a_{1}, a_{2}, \ldots, a_{\ell}, a_{\ell+1}, \ldots, a_{\ell+k}, a_{\ell+k+1}, \ldots, a_{n}\right]\right)\right) \\
& =\sigma_{k}\left(\left[a_{\ell+1}, \ldots, a_{\ell+k}, a_{\ell+k+1}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{\ell}\right]\right) \\
& =\left[a_{\ell+k+1}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{\ell}, a_{\ell+1}, \ldots, a_{\ell+k}\right] \\
& =\sigma_{\ell+k}\left(\left[a_{1}, a_{2}, \ldots, a_{\ell}, a_{\ell+1}, \ldots, a_{\ell+k}, a_{\ell+k+1}, \ldots, a_{n}\right]\right) \\
& =\sigma_{\ell+k}(\mathbf{a}) \\
& =\sigma_{k+\ell}(\mathbf{a}) \quad(\text { Since } k+\ell=\ell+k .)
\end{aligned}
$$

4. How does the left shift operator interact with the dot product? [2]

Solution. The best one can hope for - and that turns out to actually work! -is probably that if $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ are n-place vectors and k is an integer with $0 \leq k<n$, then $\sigma_{k}(\mathbf{a}) \cdot \sigma_{k}(\mathbf{b})=\mathbf{a} \cdot \mathbf{b}$:

$$
\begin{aligned}
\sigma_{k}(\mathbf{a}) \cdot \sigma_{k}(\mathbf{b}) & =\sigma_{k}\left(\left[a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right]\right) \cdot \sigma_{k}\left(\left[b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right]\right) \\
& =\left[a_{k+1}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{k}\right] \cdot\left[b_{k+1}, \ldots, b_{n}, b_{1}, b_{2}, \ldots, b_{k}\right] \\
& =a_{k+1} b_{k+1}+a_{k+2} b_{k+2}+\cdots+a_{n} b_{n}+a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k} \\
& =a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}+a_{k+1} b_{k+1}+a_{k+2} b_{k+2}+\cdots+a_{n} b_{n} \\
& =\left[a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right] \cdot\left[b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right] \\
& =\mathbf{a} \cdot \mathbf{b}
\end{aligned}
$$

What about possibilities that turn out to not to work? For one, it isn't hard to come up with examples showing that if $k \neq \ell$, then $\sigma_{k}(\mathbf{a}) \cdot \sigma_{\ell}(\mathbf{b})$ need not equal $\mathbf{a} \cdot \mathbf{b}$. (For one example, try $\mathbf{a}=\mathbf{b}=[1,2,3,4], k=1$, and $\ell=2$.)
5. Find a vector a with as many places as you can such that each entry of \mathbf{a} is either +1 or -1 , and such that for every left shift by $k>0$ places we have $\left|\mathbf{a} \cdot \sigma_{k}(\mathbf{a})\right| \leq 1$. [3]

Solution. Here's a table with essentially all the vectors with the given property of length n less than 39 , where + represents an entry of +1 and - represents an entry of -1 . ("Essentially all" means that every other vector of these lengths with the given property is obtained from one of those given below by reversing the order of the entries, and/or multiplying the vector by -1 , and/or left- or right-shifting the vector.)

```
        Vector
\(+\)
\(+-\)
\(++-\)
\(+++-\)
\(+++-+\)
\(+++--+-\)
\(+++---+--+-\)
\(+++++--++-+-+\)
\(+++++-+++--+-\)
\(++++-+-++--+---\)
\(++++--++-++---+-+-\)
\(+++++----+-+--++--++-+-\)
```



```
\(+++++---++-+++-+-+----+--+-++--\)
\(+++++--+--++---+-++-+-+--+++-\)
\(+++++-++--+++---++-+-+--+---+-\)
\(+++++---+++-+--+--++-+-+---+--+++_{-}^{+}\)
```

The vectors of length ≤ 13 (except for the second one of length 13) on this list were discovered first, by R.H. Barker [1], in connection with work he was doing on radar. These actually satisfy a stronger property: that for every m with $0<m<n$, the sum

$$
a_{1} a_{n-m+1}+a_{2} a_{n-m+2}+\cdots+a_{m} a_{n}=\sum_{i=1}^{m} a_{i} a_{n-m+i}
$$

has absolute value at most 1. It was later shown by R.J. Turyn and J. Storer [2] that these Barker codes (along with ++) are essentially the only vectors of +1 s and -1 s with this property.

The other vectors in the table, plus various existence results, were found after an engineer (my brother) working on a telecommunications protect wanted sequences with the property we were given, but could only find the finitely many Barker codes. There turn out to be weak Barker codes of arbitrarily large lengths.

References

1. R.H. Barker, Synchronizing arrangements for pulse code systems, US patent 2721 318, issued Oct. 18, 1955 (filed Feb. 16, 1953).
2. R.J. Turyn and J. Storer, On binary sequences, Proc. Amer. Math. Soc. 12 (1961), pp. 394-399.
3. N. Bilaniuk, S. Bilaniuk, and B. Zhou, Extensions to the known binary sequences of the Barker type [This title better change!], unpublished.

That's all for now folks!

