
Mathematics 1350H – Linear algebra I: matrix algebra
Trent University, Fall 2008
Solutions to Assignment #2

Shifty business

Suppose a = [a1, a2, . . . , an] is an n-place row vector. The left shift of a by k places
(where 0 ≤ k < n) is the vector σk(a) = [ak+1, ak+2, . . . , an, a1, a2, . . . , ak]. For example,
here is a left shift by 2 places of a 6-place vector:

σ2 ([3,−1, 0, 5, 1,−2]) = [0, 5, 1,−2, 3,−1]

Note that for any vector a, σ0 (a) = a.

1. Explain why σk(sa) = sσk(a) for any n-place vector a, integer k with 0 ≤ k < n, and
scalar s. [1.5]

Solution. Suppose a = [a1, a2, . . . , an] is an n-place vector, s is a scalar, and k is an
integer with 0 ≤ k < n. Then

σk(sa) = σk (s [a1, a2, . . . , ak, ak+1, . . . , an])
= σk ([sa1, sa2, . . . , sak, sak+1, . . . , san])
= [sak+1, . . . , san, sa1, sa2, . . . , sak]
= s [ak+1, . . . , an, a1, a2, . . . , ak]
= sσk ([a1, a2, . . . , ak, ak+1, . . . , an])
= sσk(a) ,

as desired. �

2. Explain why σk(a + b) = σk(a) + σk(b) for any n-place vectors a and b, and any
integer k with 0 ≤ k < n. [1.5]

Solution. Suppose a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn] are n-place vectors and k
is an integer with 0 ≤ k < n. Then

σk(a + b) = σk ([a1, a2, . . . , ak, ak+1, . . . , an] + [b1, b2, . . . , bk, bk+1, . . . , bn])
= σk ([a1 + b1, a2 + b2, . . . , ak + bk, ak+1 + bk+1, . . . , an + bn])
= [ak+1 + bk+1, . . . , an + bn, a1 + b1, a2 + b2, . . . , ak + bk]
= [ak+1, . . . , an, a1, a2, . . . , ak] + [bk+1, . . . , bn, b1, b2, . . . , bk]
= σk ([a1, a2, . . . , ak, ak+1, . . . , an]) + σk ([b1, b2, . . . , bk, bk+1, . . . , bn])
= σk(a) + σk(b) ,

as desired. �
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3. Is it true that σk (σ`(a)) = σk+`(a)? Explain why or why not. [2]

Solution. It is true. Suppose a = [a1, a2, . . . , an] is an n-place vector, and suppose that
k and ` are integers such that each of k, `, and k + ` is ≥ 0 and < n. Then:

σk (σ`(a)) = σk (σ` ([a1, a2, . . . , a`, a`+1, . . . , a`+k, a`+k+1, . . . , an]))
= σk ([a`+1, . . . , a`+k, a`+k+1, . . . , an, a1, a2, . . . , a`])
= [a`+k+1, . . . , an, a1, a2, . . . , a`, a`+1, . . . , a`+k]
= σ`+k ([a1, a2, . . . , a`, a`+1, . . . , a`+k, a`+k+1, . . . , an])
= σ`+k(a)
= σk+`(a) (Since k + ` = `+ k.) �

4. How does the left shift operator interact with the dot product? [2]

Solution. The best one can hope for – and that turns out to actually work! –is probably
that if a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn] are n-place vectors and k is an integer
with 0 ≤ k < n, then σk(a) · σk(b) = a · b:

σk(a) · σk(b) = σk ([a1, a2, . . . , ak, ak+1, . . . , an]) · σk ([b1, b2, . . . , bk, bk+1, . . . , bn])
= [ak+1, . . . , an, a1, a2, . . . , ak] · [bk+1, . . . , bn, b1, b2, . . . , bk]
= ak+1bk+1 + ak+2bk+2 + · · ·+ anbn + a1b1 + a2b2 + · · ·+ akbk

= a1b1 + a2b2 + · · ·+ akbk + ak+1bk+1 + ak+2bk+2 + · · ·+ anbn

= [a1, a2, . . . , ak, ak+1, . . . , an] · [b1, b2, . . . , bk, bk+1, . . . , bn]
= a · b

What about possibilities that turn out to not to work? For one, it isn’t hard to come
up with examples showing that if k 6= `, then σk(a) · σ`(b) need not equal a · b. (For one
example, try a = b = [1, 2, 3, 4], k = 1, and ` = 2.) �

5. Find a vector a with as many places as you can such that each entry of a is either +1
or −1, and such that for every left shift by k > 0 places we have |a · σk(a)| ≤ 1. [3]

Solution. Here’s a table with essentially all the vectors with the given property of length
n less than 39, where + represents an entry of +1 and − represents an entry of −1.
(“Essentially all” means that every other vector of these lengths with the given property
is obtained from one of those given below by reversing the order of the entries, and/or
multiplying the vector by −1, and/or left- or right-shifting the vector.)
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n Vector
1 +
2 +−
3 + +−
4 + + +−
5 + + +−+
7 + + +−−+−
11 + + +−−−+−−+−
13 + + + + +−−+ +−+−+
13 + + + + +−+ + +−−+−
15 + + + +−+−+ +−−+−−−
19 + + + +−−+ +−+ +−−−−+−+−
23 + + + + +−−−−+−+−−+ +−−+ +−+−
31 + + + +−−−+−+−+ + +−−−−+−−+−−+ + +−+ +−
31 + + + + +−−−+ +−+ + +−+−+−−−−+−−+−+ +−−
31 + + + + +−−+−−+ +−−−−+−+ +−+−+−−−+ + +−
31 + + + + +−+ +−−+ + +−−−−+ +−+−+−−+−−−+−
35 + + + + +−−−+ + +−+−−+−−+ +−+−+−−−−+−−+ + +−

The vectors of length ≤ 13 (except for the second one of length 13) on this list were
discovered first, by R.H. Barker [1], in connection with work he was doing on radar. These
actually satisfy a stronger property: that for every m with 0 < m < n, the sum

a1an−m+1 + a2an−m+2 + · · ·+ aman =
m∑

i=1

aian−m+i

has absolute value at most 1. It was later shown by R.J. Turyn and J. Storer [2] that these
Barker codes (along with ++) are essentially the only vectors of +1s and −1s with this
property.

The other vectors in the table, plus various existence results, were found after an
engineer (my brother) working on a telecommunications protect wanted sequences with
the property we were given, but could only find the finitely many Barker codes. There
turn out to be weak Barker codes of arbitrarily large lengths.
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That’s all for now folks! �
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