Mathematics 1350H - Linear algebra I: matrix algebra Trent University, Fall 2008

Solutions to the quizzes
Quiz \#1. Friday, 19 September, 2008. [5 minutes]

1. Sketch the vector $\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right]$ (in standard position) and find its length. [5]

Solution. Here's a sketch of the vector:

It remains to compute the length of the vector:

$$
\left\|\left[\begin{array}{l}
2 \\
4 \\
4
\end{array}\right]\right\|=\sqrt{2^{2}+4^{2}+4^{2}}=\sqrt{4+16+16}=\sqrt{36}=6
$$

Quiz \#2. Friday, 26 September, 2008. [5 minutes]

1. Let $\mathbf{a}=\left[\begin{array}{c}3 \\ -1 \\ 0 \\ -3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -1\end{array}\right] . \operatorname{Compute}^{\operatorname{proj}_{\mathbf{b}}(\mathbf{a}) .[5]}$

Solution. We plug into the formula and chug away!

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{b}}(\mathbf{a}) & =\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}=\frac{\left[\begin{array}{c}
3 \\
-1 \\
0 \\
-3
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right]}{\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right]}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
& =\frac{3 \cdot 1+(-1) \cdot 0+0 \cdot 1+(-3) \cdot(-1)}{1 \cdot 1+0 \cdot 0+1 \cdot 1+(-1) \cdot(-1)}\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right] \\
& =\frac{6}{3}\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right]=2\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
2 \\
-2
\end{array}\right]
\end{aligned}
$$

Whew!

Quiz \#3. Friday, 3 October, 2008. [5 minutes]

1. Find the (least) distance from the point $(0,0,0)$ to the plane $x+y+z=12$. [5]

Solution. First, observe that $\mathbf{n}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is a vector perpendicular to the plane $x+y+z=$ 12: just read off the coefficients of the variables in the given equation.

Second, it is easy to see that $(12,0,0)$ is a point on the plane, and hence that $\mathbf{a}=\left[\begin{array}{c}12 \\ 0 \\ 0\end{array}\right]$ is the vector that runs from the given point, $(0,0,0)$, to the point $(12,0,0)$ on the plane.

Third, to obtain the vector that runs between $(0,0,0)$ and the nearest point to it on the plane (in one direction or the other), we project the vector a onto the normal vector b:

$$
\operatorname{proj}_{\mathbf{n}}(\mathbf{a})=\frac{\mathbf{a} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}=\frac{\left[\begin{array}{c}
12 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{12}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right]
$$

Finally, the distance between $(0,0,0)$ and the plane $x+y+z=12$ is the length of this projection vector:

$$
\left\|\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right]\right\|=\sqrt{4^{2}+4^{2}+4^{2}}=4 \sqrt{3}
$$

Quiz \#4. Friday, 10 October, 2008. [5 minutes]

1. Solve the following system of linear equations using Gauss-Jordan reduction. [5]

$$
\begin{aligned}
x+z & =0 \\
x-z-z & =0 \\
x-z & =1 \\
y & =1
\end{aligned}
$$

Solution. We set up the corresponding augmented matrix and throw elementary row operations at it ...

$$
\begin{aligned}
\left.\begin{array}{rl}
& {\left[\begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
1 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]} \\
\begin{array}{c}
R_{3}-R_{1} \\
R_{4}-R_{2}
\end{array} & {\left[\begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 2 & 1
\end{array}\right]} \\
& \begin{array}{cccc|c}
\Longrightarrow \\
-\frac{1}{2} R_{3} \\
\frac{1}{2} R_{4} \\
R_{1}-R_{3} \\
R_{2}+R_{4}
\end{array}
\end{array} \begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 1 & \frac{1}{2}
\end{array}\right] \\
\hline
\end{aligned}\left[\begin{array}{llll|c}
1 & 0 & 0 & 0 & \frac{1}{2} \\
0 & 1 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 1 & \frac{1}{2}
\end{array}\right],
$$

Hence the (only!) solution to the given system of linear equations is $x=y=w=\frac{1}{2}$ and $z=-\frac{1}{2}$.

Quiz \#5. Friday, 17 October, 2008. [10 minutes]

1. Determine whether $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in Span $\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right]\right\}$ or not. [5] Solution. $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in Span $\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right]\right\}$ exactly when there are scalars a, b, and c such that

$$
a\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+b\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

We set up the corresponding system of equations in augmented matrix form and attempt to solve it:

$$
\left.\left[\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 1 & -1 & 1 \\
2 & 0 & 4 & 1
\end{array}\right]\right)
$$

At this point the Gauss-Jordan algorithm can take us no further. Observe that the last row corresponds to the equation $0 a+0 b+0 c=3$, which is impossible to satisfy, so there are no solutions. It follows that $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is not in $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right]\right\}$.

Quiz \#6. Friday, 31 October, 2008. [10 minutes]

1. Use the Gauss-Jordan method to find the inverse of $\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -1 & 2\end{array}\right] \cdot[5]$

Solution. We set up the super-augmented matrix and go:

$$
\left.\begin{array}{rl}
& {\left[\begin{array}{ccc|ccc}
3 & 1 & 2 & 1 & 0 & 0 \\
2 & 3 & -1 & 0 & 1 & 0 \\
1 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
R_{1}
\end{array} \stackrel{\leftrightarrow}{3}\left[\begin{array}{cccc|ccc}
1 & -1 & 2 & 0 & 0 & 1 \\
2 & 3 & -1 & 0 & 1 & 0 \\
3 & 1 & 2 & 1 & 0 & 0
\end{array}\right]} \\
& \Longrightarrow \\
R_{2}-2 R_{1} \\
R_{3}-3 R_{1}
\end{array}\left[\begin{array}{ccc|ccc}
1 & -1 & 2 & 0 & 0 & 1 \\
0 & 5 & -5 & 0 & 1 & -2 \\
0 & 4 & -4 & 1 & 0 & -3
\end{array}\right] \stackrel{\frac{1}{5}}{\Longrightarrow}\left[\begin{array}{ccccccc}
1 & -1 & 2 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & \frac{1}{5} & -\frac{2}{5} \\
0 & 4 & -4 & 1 & 0 & -3
\end{array}\right]\right)
$$

At this point it should be apparent that we cannot turn the left-hand matrix into the identity matrix. It follows that $\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -1 & 2\end{array}\right]$ has no inverse.

Quiz \#7. Friday, 7 November, 2008. [10 minutes]

1. Suppose \mathbf{A} is an $n \times n$ matrix which has an inverse, and suppose $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are the columns of \mathbf{A}. What can you deduce about this collection of vectors? [5]
Solution. Recall from class (and the text) that there is a longish list of properties which are equivalent to a matrix having an inverse. A couple of these are relevant here:
\mathbf{A} has an inverse $\Longleftrightarrow \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent

$$
\Longleftrightarrow \quad \operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{n}
$$

One can rephrase these a little, using the definitions of independence and span:
\Longleftrightarrow No column of \mathbf{A} is a linear combination of the other columns of \mathbf{A}.
\Longleftrightarrow Every vector $\mathbf{b} \in \mathbb{R}^{n}$ is a linear combination of the columns of \mathbf{A}.
One could also note another equivalent that is closely related:
\Longleftrightarrow The dimension of $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is n.
Using the fact that the (transposes of the) columns of \mathbf{A} are the rows of \mathbf{A}^{T}, we can also make a similar statements about the rows of \mathbf{A}^{T}.

Quiz \#8. Friday, 8 November, 2008. [5 minutes]

1. Determine whether $U=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]| | x|=|y|\}\right.$ is a subspace of \mathbb{R}^{2} or not. [5]

Solution. U is not a subspace of \mathbb{R}^{2}. While it is closed under multiplication by scalars, it is not closed under vector addition. For example, it is easy to see that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are in U, since $|1|=1=|1|$ and $|-1|=1=|1|$. However,

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

which is not in U because $|0|=0 \neq 2=|2|$.

Quiz \#9. Friday, 21 November, 2008. [10 minutes]

1. Find a spanning set for the subspace

$$
\left.S=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left|\begin{array}{r}
x+2 y+2 \\
2 y+z
\end{array}\right| \begin{array}{l}
x \\
-x+2 y+2 z
\end{array}\right)=0\right\}
$$

of \mathbb{R}^{3}. [5]
Solution. We find the (parametric representation of the) set of solutions of the system of linear equations used to define S :

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
-1 & 2 & 2 & 0
\end{array}\right]}
\end{gathered} \underset{\substack{ \\
R_{3}+R_{1}}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 4 & 2 & 0
\end{array}\right]
$$

The last augmented matrix corresponds to equations $x-z=0$ and $y+\frac{1}{2} z=0$, which we can use to solve for x and y in terms of $z: x=z$ and $y=-\frac{1}{2} z$. hence the vector-parametric representation of the set of solutions to the original system of equations is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
1
\end{array}\right],
$$

where $t \in \mathbb{R}$ is the paramenter. It follows that $S=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -\frac{1}{2} \\ 1\end{array}\right]\right\}$.

Quiz \#10. Friday, 28 November, 2008. [12 minutes]

1. Determine the dimension of the subspace

$$
S=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

of \mathbb{R}^{4}. [5]
Solution. There are several ways to do this. In this solution we will find a basis for S that is a subset of the given spanning set for S and then count how many vectors there are in this basis. To this end we assemble the given spanning set into the columns of a matrix and then row reduce this matrix as far as possible:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 1 & 1
\end{array}\right] \quad \underset{3}{ } \Longrightarrow R_{1}\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & -1 & 1 & 1
\end{array}\right]} \\
& \underset{R_{1}-R_{2}}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 1 \\
0 & 0 & -1 & 1 & 1
\end{array}\right] \underset{(-1) R_{3}}{\Longrightarrow}\left[\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & -1 & 1 & 1
\end{array}\right] \\
& \begin{array}{c}
R_{1}-R_{3} \\
R_{4}+R_{3}
\end{array}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Note that there are three non-zero rows remaining in this matrix. These have leading nonzero entries in the first three columns; thus the first three vectors of the given spanning set,

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right]\right\}
$$

will serve as a basis for S. It follows that the dimension of S is three.

Quiz \#11. Friday, 5 December, 2008. [10 minutes]

1. Find the the eigenvalue(s) and all the eigenvectors of $\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$. [5]

Solution. First, we find the eigenvalues.

$$
\left|\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right|=\left|\begin{array}{cc}
2-\lambda & -1 \\
1 & -\lambda
\end{array}\right|=(2-\lambda)(-\lambda)-(-1) \cdot 1=\lambda^{2}-2 \lambda+1
$$

It's pretty easy to see that $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}=0$ only when $\lambda=1$, and so $\lambda=1$ is the only eigenvalue of the given matrix.

Second, we find all the eigenvectors of the given matrix for the eigenvalue $\lambda=1$; that is, we find all the solutions $\left[\begin{array}{l}x \\ y\end{array}\right]$ of the equation

$$
\left(\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \text { i.e. } \quad\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

It's obvious that we are looking for all the solutions to the linear equation $x-y=0$, i.e. $x=y$. If we let y equal the parameter t, it follows that $x=t$ as well, and so the vector-parametric presentation of the set of solutions is $\left[\begin{array}{l}x \\ y\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$, where $t \in \mathbb{R}$.

