Mathematics $\mathbf{1 3 5 0 H}$ - Linear algebra I: matrix algebra Trent University, Fall 2008

Quizzes

Quiz \#1. Friday, 19 September, 2008. [5 minutes]

1. Sketch the vector $\left[\begin{array}{l}2 \\ 4 \\ 4\end{array}\right]$ (in standard position) and find its length. [5]

Quiz \#2. Friday, 26 September, 2008. [5 minutes]

1. Let $\mathbf{a}=\left[\begin{array}{c}3 \\ -1 \\ 0 \\ -3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}1 \\ 0 \\ 1 \\ -1\end{array}\right]$. $\operatorname{Compute}_{\operatorname{proj}_{\mathbf{b}}(\mathbf{a}) .[5]}$

Quiz \#3. Friday, 3 October, 2008. [5 minutes]

1. Find the (least) distance from the point $(0,0,0)$ to the plane $x+y+z=12$. [5]

Quiz \#3. Alternate version. [5 minutes]

1. Find the (least) distance from the point $(1,1,1)$ to the plane $x-y+z=4$. [5]

Quiz \#4. Friday, 10 October, 2008. [5 minutes]

1. Solve the following system of linear equations using Gauss-Jordan reduction. [5]

$$
\begin{array}{rl}
x+z & +z-0 \\
x & y-z
\end{array} \begin{aligned}
& =1 \\
& =z
\end{aligned}
$$

Quiz \#5. Friday, 17 October, 2008. [10 minutes]

1. Determine whether $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right]\right\}$ or not. [5]

Quiz \#6. Friday, 31 October, 2008. [10 minutes]

1. Use the Gauss-Jordan method to find the inverse of $\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -1 & 2\end{array}\right] \cdot[5]$

Quiz \#7. Friday, 7 November, 2008. [10 minutes]

1. Suppose \mathbf{A} is an $n \times n$ matrix which has an inverse, and suppose $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are the columns of \mathbf{A}. What can you deduce about this collection of vectors? [5]
Quiz \#8. Friday, 14 November, 2008. [5 minutes]
2. Determine whether $U=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]| | x|=|y|\}\right.$ is a subspace of \mathbb{R}^{2} or not. [5]

Quiz \#9. Friday, 21 November, 2008. [10 minutes]

1. Find a spanning set for the subspace

$$
S=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \left\lvert\, \begin{array}{r}
x+2 y \\
2 y+z=0 \\
-x+2 y+2 z=
\end{array}\right.\right\}
$$

of \mathbb{R}^{3}. [5]
Quiz \#10. Friday, 28 November, 2008. [12 minutes]

1. Determine the dimension of the subspace

$$
S=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

of \mathbb{R}^{4}. [5]
Quiz \#11. Friday, 5 December, 2008. [10 minutes]

1. Find the the eigenvalue(s) and all the eigenvectors of $\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right] .[5]$
