Mathematics 1350H - Linear algebra I: matrix algebra Trent University, Fall 2008

Final Examination
Friday, 19 December, 2008
Time: 3 hours
Brought to you by Стефан Біланюк.
Instructions: Show all your work. If in doubt about something, ask!
Aids: Calculator; annotated Formula for Success or $8.5^{\prime \prime} \times 11^{\prime \prime}$ aid sheet; one brain.
Part I. Do all of 1-5.

1. Consider the plane in \mathbb{R}^{3} given by the equation $x+y+2 z=8$, and the line in \mathbb{R}^{3} given by the parametric equations $x=4+t, y=4-t$, and $z=0$.
a. Sketch the parts of this plane and line that lie in the first octant. [4]
b. Find the angle between the normal vector of the plane and the direction vector of the line. [3]
c. Show that the line is contained in the plane. [3]
2. Consider the following system of linear equations.

$$
\begin{aligned}
& w+2 y+4 z=-8 \\
& x-3 y-z=6 \\
& 3 w+4 x-6 y+8 z=0 \\
& -x+3 y+4 z=-12
\end{aligned}
$$

Use Gauss-Jordan elimination to find all the solutions, if any, of this system. Without computing it, what must the determinant of the matrix of coefficients be? [10]
3. Let $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2\end{array}\right]$.
a. Find the inverse of \mathbf{A}, if it exists. [10]
b. Use your work in a to compute the determinant of A. [5]
4. Find all the eigenvalues and eigenvectors of $\mathbf{C}=\left[\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right]$. [15]
5. Let $\mathbf{M}=\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]$.
a. Find a basis for the column space of M. [10]
b. Determine the rank and nullity of M. [5]

Part II. Do any three of 6-11.
6. Suppose T is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} such that

$$
T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Find the matrix \mathbf{D} such that for all $\mathbf{x} \in \mathbb{R}^{3}, T(\mathbf{x})=\mathbf{D} \mathbf{x}$. [10]
7. Suppose \mathbf{B} is an invertible matrix. Show that $\left(\mathbf{B}^{T}\right)^{-1}=\left(\mathbf{B}^{-1}\right)^{T}$. [10]
8. Sketch the point $(0,5,3)$ and the line given by the parametric equations $x=2 t$, $y=-6 t$, and $z=10 t$, where $t \in \mathbb{R}$, and find the distance between them. [10]
9. Find a linearly independent subset of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$ that is as large as possible. [10]
10. Give examples, if such exist, of invertible 3×3 matrices \mathbf{P} and \mathbf{Q} such that:
a. $\mathbf{P}+\mathbf{Q}$ is invertible. [2]
b. $\mathbf{P Q}$ is invertible. [2]
c. $\mathbf{P}+\mathbf{Q}$ is not invertible. [2]
d. $\mathbf{P Q}$ is not invertible. [2]
e. $\mathbf{P}^{2}+\mathbf{Q}^{T}$ is not invertible. [2]
11. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a linear transformation. Explain why the null space of T, $\operatorname{null}(T)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid T(\mathbf{x})=\mathbf{0}\right\}$, is a subspace of \mathbb{R}^{n}. [10]

$$
[\text { Total }=95]
$$

Part Max. Bonus!
Min. Write an original little poem about linear algebra or mathematics in general. [2]

