
Mathematics 1350H – Linear algebra I: matrix algebra

Trent University, Fall 2008

Solutions to the Final Examination

Friday, 19 December, 2008

Time: 3 hours Brought to you by Stefan B�lan�k.

Instructions: Show all your work. If in doubt about something, ask!

Aids: Calculator; annotated Formula for Success or 8.5′′ × 11′′ aid sheet; one brain.

Part I. Do all of 1–5.

1. Consider the plane in R
3 given by the equation x + y + 2z = 8, and the line in R

3

given by the parametric equations x = 4 + t, y = 4 − t, and z = 0.

a. Sketch the parts of this plane and line that lie in the first octant. [4]
b. Find the angle between the normal vector of the plane and the direction vector

of the line. [3]
c. Show that the line is contained in the plane. [3]

Solution to a. To sketch the part of the plane in the first octant, we first find its
intercepts. The intercepts of the plane are obtained by setting two of x, y, and z to 0 in
x + y + 2z = 8 and the solving for the third. This gives the points (8, 0, 0), (0, 8, 0), and
(0, 0, 4). Connecting these up gives us the part of the plane for which x, y, and z are all
≥ 0, i.e. the part of the plane in the first octant.

To sketch the part of the line in the first octant, we need is to find which points on
the line have all of its coordinates ≥ 0. Note that x = 4 + t ≥ 0 exactly when t ≥ −4,
y = 4 − t ≥ 0 exactly when t ≤ 4, and z = 0 ≥ 0 for all t. It follows that the points on
the line in the first octant are those given by −4 ≤ t ≤ 4. The point corresponding to
t = −4 is (0, 8, 0), and the point corresponding to t = 4 is (8, 0, 0). Plot these two points
and connect them up . . .

Here’s the sketch:

Note that the axes, which are not labelled, are in standard position. �
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Solution to b. The normal vector to the plane and the direction vector of the line are

n =





1
1
2



 and d =





1
−1
0



, respectively. Recall that the angle θ between them satisfies

cos(θ) =
n · d

‖n‖‖d‖ . Since n · d =





1
1
2



 ·





1
−1
0



 = 1 · 1 + 1 · (−1) + 2 · 0 = 1 − 1 + 0 = 0,

cos(θ) = 0, which implies that θ = 90◦, i.e. n and d are orthogonal to each other. �

Solution to c. As should be obvious from part a, two points of the line are in the plane,
namely (8, 0, 0) and (0, 8, 0). It follows that the entire line must be in the plane.

More directly, plugging the parametric description of the line, x = 4 + t, y = 4 − t,
and z = 0, into the left-hand side of the equation of the plane, x + y + 2z = 8, gives

(4 + t) + (4 − t) + 2 · 0 = 4 + t + 4 − t + 0 = 8,

which equals the right-hand side of the equation of the plane. It follows that every point
of the line is a point of the plane, i.e. the line is contained in the plane. �
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2. Consider the following system of linear equations.

w + 2y + 4z = −8
x − 3y − z = 6

3w + 4x − 6y + 8z = 0
− x + 3y + 4z = −12

Use Gaussian elimination to find all the solutions, if any, of this system. Without
computing it, what must the determinant of the matrix of coefficients be? [10]

Solution. We set up the corresponding augmented matrix and throw the Gauss-Jordan
algorithm at it:







1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 4

∣

∣

∣

∣

∣

∣

∣

−8
6
0

−12







=⇒
R3 − 3R1







1 0 2 4
0 1 −3 −1
0 4 −12 −4
0 −1 3 4

∣

∣

∣

∣

∣

∣

∣

−8
6
24
−12







=⇒
R3 − 4R2

R4 + R2







1 0 2 4
0 1 −3 −1
0 0 0 0
0 0 0 3

∣

∣

∣

∣

∣

∣

∣

−8
6
0
−6







=⇒

1

3
R4







1 0 2 4
0 1 −3 −1
0 0 0 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

−8
6
0
−2







=⇒
R3 ↔ R4







1 0 2 4
0 1 −3 −1
0 0 0 1
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

−8
6
−2
0







R1 − 4R3

R2 + R3

=⇒







1 0 2 0
0 1 −3 0
0 0 0 1
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

0
4
−2
0







Having taken Gauss-Jordan reduction as far as we can, the last matrix corresponds to the
system of equations w + 2y = 0, x − 3y = 4, and z = 0, i.e. w = −2y, x = 4 + 3y, and
z = 0. If we set y equal to the parameter t, we can write all the possible solutions in
vector-parametric form:







w

x

y

z






=







0
4
0
0






+ t







−2
3
1
0






, where t ∈ R

Since the 4 × 4 matrix of coefficients can be row-reduced to a matrix with a row of
zeroes, it must have determinant 0. �
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3. Let A =





1 1 1
2 3 2
3 8 2



.

a. Find the inverse of A, if it exists. [10]
b. Use your work in a to compute the determinant of A. [5]

Solution to a. We set up the “super-augmented” matrix [A | I ] and try to reduce it to
[

I | A−1
]

:





1 1 1
2 3 2
3 8 2

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





=⇒
R2 − 2R1

R3 − 3R1





1 1 1
0 1 0
0 5 −1

∣

∣

∣

∣

∣

∣

1 0 0
−2 1 0
−3 0 1





R1 − R2

=⇒
R3 − 5R2





1 0 1
0 1 0
0 0 −1

∣

∣

∣

∣

∣

∣

3 −1 0
−2 1 0
7 −5 1



 =⇒
(−1)R3





1 0 1
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

3 −1 0
−2 1 0
−7 5 −1





R1 − R3

=⇒





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

10 −6 1
−2 1 0
−7 5 −1





Thus A−1 =





10 −6 1
−2 1 0
−7 5 −1



. �

Solution to b. The only row operation that would change the determinant of A in the
(left sides only of the) reduction above is the next-to-last step, (−1)R3. It follows that
|A|(−1) = |I| = 1, so |A| = −1. �
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4. Find all the eigenvalues and eigenvectors of C =

[

2 1
3 0

]

. [15]

Solution. To find the eigenvalues we solve the equation |C− λI| = 0 for λ.

|C− λI| =

∣

∣

∣

∣

[

2 1
3 0

]

− λ

[

1 0
0 1

]∣

∣

∣

∣

=

∣

∣

∣

∣

2 − λ 1
3 0 − λ

∣

∣

∣

∣

= (2 − λ)(−λ) − 1 · 3 = λ2 − 2λ − 3

We thus need to solve λ2 − 2λ − 3 = 0 for λ. Using the quadratic equation, we get:

λ =
−(−2) ±

√

(−2)2 − 4 · 1 · (−3)

2 · 1 =
2 ±

√
16

2
=

2 ± 4

2
= 1 ± 2

Thus λ = 1 + 2 = 3 and λ = 1 − 2 = −1 are the eigenvalues of C.
To find all the eigenvectors of C we need to solve the homogenous equations (C −

λI)x = 0 for each eigenvalue.
When λ = 3,

C− λI =

[

2 1
3 0

]

− 3

[

1 0
0 1

]

=

[

−1 1
3 −3

]

.

We row-reduce the augmented matrix for the corresponding homogeneous system of linear
equations:

[

−1 1
3 −3

∣

∣

∣

∣

0
0

]

=⇒
R2 + 3R1

[

−1 1
0 0

∣

∣

∣

∣

0
0

]

(−1)R1

=⇒

[

1 −1
0 0

∣

∣

∣

∣

0
0

]

The corresponding linear equation is x − y = 0, i.e. x = y. If we set y equal to the
parameter t, the set of possible solutions, i.e. the eigenvectors of C corresponding to the

eigenvalue λ = 3, are

[

x

y

]

= t

[

1
1

]

, where t ∈ R.

Similarly, when λ = −1,

C− λI =

[

2 1
3 0

]

− (−1)

[

1 0
0 1

]

=

[

3 1
3 1

]

.

We row-reduce the augmented matrix for the corresponding homogeneous system of linear
equations:

[

3 1
3 1

∣

∣

∣

∣

0
0

]

=⇒
R2 − R1

[

3 1
0 0

∣

∣

∣

∣

0
0

]

1

3
R1

=⇒

[

1 1

3

0 0

∣

∣

∣

∣

0
0

]

The corresponding linear equation is x + y

3
= 0, i.e. x = − y

3
. If we set y equal to the

parameter s, the set of possible solutions, i.e. the eigenvectors of C corresponding to the

eigenvalue λ = 3, are

[

x

y

]

= s

[

− 1

3

1

]

, where s ∈ R. �
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5. Let M =











1 0 0 −1
1 0 1 0
0 0 1 1
1 1 1 0
0 1 1 1











.

a. Find a basis for the column space of M. [10]
b. Determine the rank and nullity of M. [5]

Solution to a. We will row-reduce MT =







1 1 0 1 0
0 0 0 1 1
0 1 1 1 1
−1 0 1 0 1






as for Gaussian, rather

than Gauss-Jordan, elimination; the surviving non-zero rows, transposed back into columns,
will be the basis we desire.







1 1 0 1 0
0 0 0 1 1
0 1 1 1 1
−1 0 1 0 1







=⇒

R4 + R1







1 1 0 1 0
0 0 0 1 1
0 1 1 1 1
0 1 1 1 1







=⇒
R2 ↔ R3







1 1 0 1 0
0 1 1 1 1
0 0 0 1 1
0 1 1 1 1







=⇒

R4 − R2







1 1 0 1 0
0 1 1 1 1
0 0 0 1 1
0 0 0 0 0







Thus





























1
1
0
1
0











,











0
1
1
1
1











,











0
0
0
1
1





























is a basis for the column space of M. �

Solution to b. The rank of M is equal to the dimension of its column space, which must
be 3 because there are three vectors in the basis obtained in part a. Since M is a 4 × 5
matrix, its nullity is 4 minus its rank, i.e. 4 − 3 = 1. �
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Part II. Do any three of 6–11.

6. Suppose T is a linear transformation from R
3 to R

3 such that

T









0
1
1







 =





1
0
0



 , T









1
0
1







 =





0
1
0



 , and T









1
1
0







 =





0
0
1



 .

Find the matrix D such that for all x ∈ R
3, T (x) = Dx. [10]

Solution. We need to find a matrix D such that

D





0
1
1



 =





1
0
0



 , D





1
0
1



 =





0
1
0



 , and D





1
1
0



 =





0
0
1



 .

This amounts to finding a matrix D such that

D





0 1 1
1 0 1
1 1 0



 =





1 0 0
0 1 0
0 0 1



 ;

that is,

D =





1 0 0
0 1 0
0 0 1









0 1 1
1 0 1
1 1 0





−1

=





0 1 1
1 0 1
1 1 0





−1

,

assuming that the inverse in question exists. We attempt, therefore, to compute said
inverse:





0 1 1
1 0 1
1 1 0

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





R1 ↔ R2

=⇒





1 0 1
0 1 1
1 1 0

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
0 0 1





=⇒
R3 − R1





1 0 1
0 1 1
0 1 −1

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
0 −1 1



 =⇒
R3 −R2





1 0 1
0 1 1
0 0 −2

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
−1 −1 1





=⇒
(

− 1

2

)

R3





1 0 1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
1

2

1

2
− 1

2





R1 − R3

R2 − R3

=⇒





1 0 0
0 1 0
0 0 0

∣

∣

∣

∣

∣

∣

− 1

2

1

2

1

2
1

2
− 1

2

1

2
1

2

1

2
− 1

2





Thus the inverse matrix exists, and so

D =





0 1 1
1 0 1
1 1 0





−1

=





− 1

2

1

2

1

2
1

2
− 1

2

1

2
1

2

1

2
− 1

2



 . �
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7. Suppose B is an invertible matrix. Show that
(

BT
)

−1
=

(

B−1
)T

. [10]

Solution. We will show that
(

B−1
)T

acts as the inverse of BT :

(

B−1
)T

BT =
(

BB−1
)T

= IT = I

Since a matrix may have only one inverse (if any!), it follows that
(

BT
)

−1
=

(

B−1
)T

. �
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8. Sketch the point (0, 5, 3) and the line given by the parametric equations x = 2t,
y = −6t, and z = 10t, where t ∈ R, and find the distance between them. [10]

Solution. Note that (0, 5, 3) is in the yz-plane (i.e. x = 0), and that the line passes

through the origin – when t = 0, we get (0, 0, 0) – and has direction vector





2
−6
10



. Sketch-

ing all this gives:

To find the (shortest!) distance from the given point to the given line, we follow the
procedure given in Example 1.25 of the text.

First, let v be the vector from the point (0, 0, 0) on the line to the given point, (0, 5, 3),

namely v =





0
5
3



.

Second, we compute the projection of v onto the direction vector d =





2
−6
10



 of the

line:

projd(v) =

(

d · v
d · d

)

d =
0 · 2 + 5 · (−6) + 3 · 3

2 · 2 + (−6) · (−6) + 3 · 3





2
−6
10





= −21

49





2
−6
10



 = −3

7





2
−6
10



 =





− 6

7
18

7

− 30

7





Third, we find the component of v perpendicular to the line by subtracting the part
parallel to the line, projd(v), from v:

v − projd(v) =





0
5
3



 −





− 6

7
18

7

− 30

7



 =





6

7
17

7
51

7





9



Fourth, the desired distance is the length of the component of v perpendicular to the
line:

‖v − projd(v)‖ =

∥

∥

∥

∥

∥

∥





6

7
17

7
51

7





∥

∥

∥

∥

∥

∥

=

√

(

6

7

)2

+

(

17

7

)2

+

(

51

7

)2

=

√

36 + 289 + 2601

49
=

√

2926

49
=

√

418

7

Thus the distance from the given point to the given line is
√

418

7
. �
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9. Find a linearly independent subset of

















1
1
0
0






,







1
0
1
0






,







1
0
0
1






,







0
1
1
0






,







0
1
0
1






,







0
0
1
1

















that

is as large as possible. [10]

Solution. A maximal linearly independent subset of the given set of vectors would be a
basis for the span of the given set of vectors. We therefore assemble the vectors into the
columns of a matrix and row-reduce it to identify such a basis:







1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1







R2 − R1

=⇒







1 1 1 0 0 0
0 −1 −1 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1







R1 + R2

=⇒
R3 + R2







1 0 0 1 1 0
0 −1 −1 1 1 0
0 0 −1 2 1 1
0 0 1 0 1 1







=⇒
(−1)R2

R3 ↔ R4







1 0 0 1 1 0
0 1 1 −1 −1 0
0 0 1 0 1 1
0 0 −1 2 1 1







R2 − R3

=⇒
R4 + R3







1 0 0 1 1 0
0 1 0 −1 −2 −1
0 0 1 0 1 1
0 0 0 2 0 0







=⇒

1

2
R3







1 0 0 1 1 0
0 1 0 −1 −2 −1
0 0 1 0 1 1
0 0 0 1 0 0







R1 − R4

R2 + R4

=⇒







1 0 0 0 1 0
0 1 0 0 −2 −1
0 0 1 0 1 1
0 0 0 1 0 0







It follows that the columns of the original matrix corresponding to the columns of the
reduced matrix in which leading 1s of a row occur form a basis for the span of the columns,

i.e. of the original set of vectors. Hence

















1
1
0
0






,







1
0
1
0






,







1
0
0
1






,







0
1
1
0

















is a maximal

linearly independent subset of the given set of vectors.
Note that this set must be a maximal linearly independent set also because is a set of

four linearly independent vectors in R
4 . . . �
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10. Give examples, if such exist, of invertible 3 × 3 matrices P and Q such that:

a. P + Q is invertible. [2]
b. PQ is invertible. [2]
c. P + Q is not invertible. [2]
d. PQ is not invertible. [2]
e. P2 + QT is not invertible. [2]

Solution to a. Set P = Q = I3. Then both are invertible as the identity matrix is its
own inverse, and so is P + Q = 2I3, whose inverse is 1

2
I3. �

Solution to b. Set P = Q = I3. Then both are invertible as the identity matrix is its
own inverse, and so is PQ = I2

3 = I3. �

Solution to c. Set P = I3 and set Q = −I3. Then both are invertible as each is its own
inverse. However, P + Q = I3 + (−I3) = 0 is obviously not invertible. �

Solution to d. There is no such example in this case, since if P and Q are both invertible,
so is PQ. Recall that then (PQ)−1 = Q−1P−1. �

Solution to e. Set P = I3 and set Q = −I3. Then both are invertible as each is its own
inverse. However, P2 + QT = I2

3 + (−I3)
T = I3 − I3 = 0 is obviously not invertible. �
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11. Suppose T : R
n → R

k is a linear transformation. Explain why the null space of T ,
null(T ) = {x ∈ R

n | T (x) = 0 }, is a subspace of R
n. [10]

Solution. We will show that null(T ) satisfies the definition of a subspace.
First, suppose that x ∈ null(T ), i.e. T (x) = 0, and that c is a scalar. Then T (cx) =

cT (x) = c0 = 0, since linear transformations respect multiplication by scalars, so cx ∈
null(T ) too.

Second, suppose that u ∈ null(T ) and v ∈ null(T ), i.e. T (u) = 0 and T (v) = 0. Then
T (u +v) = T (u) +T (v) = 0+0 = 0, since linear transformations also respect addition of
vectors, so u + v ∈ null(T ) too.

Hence null(T ) is a subspace of R
n. �

[Total = 95]

Part Max. Bonus!

Min. Write an original little poem about linear algebra or mathematics in general. [2]

Solution. Left to the reader! �

Have a nice break!

I hope to see you next term!
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