Mathematics 1350H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2008

Assignment #5

Due on Friday, 21 November, 2008.

Determinants the Gauss-Jordan way

Given a square matrix \mathbf{A} , we can compute a number called the *determinant* of \mathbf{A} , usually denoted by $|\mathbf{A}|$ or $\det(\mathbf{A})$, that gives a lot of information about \mathbf{A} . For example, $|\mathbf{A}| \neq 0$ exactly when \mathbf{A}^{-1} exists. A common problem with how determinants are usually defined is that computing them is a lot of work unless \mathbf{A} is a pretty small matrix. (Heck, it's a pain even for 3×3 matrices with the usual definition ...) Here are some facts about determinants which let you compute the determinant of a matrix using the Gauss-Jordan method:

The determinant of an $n \times n$ matrix **A** satisfies the following rules:

- *i*. The identity matrix has determinant equal to 1, *i.e.* $|\mathbf{I}_n| = 1$.
- *ii.* If you exchange the *i*th and *j*th row of **A** to get the matrix **B**, then $|\mathbf{B}| = -|\mathbf{A}|$.
- *iii.* If you multiply the *i*th row of **A** by a constant *c* to get the matrix **C**, then $|\mathbf{C}| = c|\mathbf{A}|$.
- *iv.* If you add a row vector **d** to the *i*th row of **A** to get the matrix **D**, then $|\mathbf{D}| = |\mathbf{A}| + |\mathbf{A}_{i,\mathbf{d}}|$, where $\mathbf{A}_{i,\mathbf{d}}$ is the matrix **A** with its *i*th row replaced by **d**.
- v. Taking the transpose of A doesn't change the determinant. That is, $|\mathbf{A}^T| = |\mathbf{A}|$.

If you really wanted to, by the way, you could actually use this collection of rules as the definition of the determinant of a matrix.

- **1.** Rules ii iv are true for the columns of **A** as well as the rows. Why? [2]
- 2. Suppose we get the matrix **E** by adding a multiple of row *i* of **A** to row *j* of **A**, leaving the other rows alone. Explain why $|\mathbf{E}| = |\mathbf{A}|$. [2]
- **3.** Use rules i v, as well as **1** and **2**, to compute $|\mathbf{A}|$ if:
 - **a.** A has a column or a row of zeros. [1]
 - **b.** A has two equal columns or two equal rows. [1]

c.
$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
. [1]
d. $\mathbf{A} = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$. [1]

4. Use the Gauss-Jordan method to put the matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 0 \end{bmatrix}$ in reduced rowechelon form. Apply what you have learned above to use this computation to determine $|\mathbf{A}|$. [2]