Mathematics 135H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2007

MATH 135H Test

2 November, 2007 Time: 50 minutes

Instructions

- Show all your work. Legibly!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator, and either (both sides of) one 8.5×11 aid sheet or a copy (annotated as you like) of *Formula for Success*.
- 1. Consider the planes defined by the equations x + 2y + z = 6 and 2x + y + z = 6 in three-dimensional space.
- **a.** Sketch the parts of the two planes and the line in which they intersect that lie in the first octant (*i.e.* where $x \ge 0$, $y \ge 0$, and $z \ge 0$). [4]
- **b.** Give a parametric description of the line in which the two planes intersect. [3]
- c. Determine whether the two planes are parallel, perpendicular, or neither. [3]

2. Let
$$\mathbf{a} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 8 \\ -2 \\ 2 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.
a. Determine whether $\mathbf{d} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$ is in Span{**a**, **b**, **c**} or not. [5]

- **b.** Determine whether \mathbf{a} , \mathbf{b} , and \mathbf{c} are linearly dependent or independent. [5]
- **3.** Consider the following system of linear equations.

- **a.** Find the solution(s), if any, of the given system in terms of c, the coefficient of y in the third equation. [6]
- **b.** For which values of c are there: i. No solutions? ii. Exactly one solution? iii. Many solutions? Explain why in each case. [4]
- 4. Let $\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 1 & 3 \end{bmatrix}$ and $\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. In each of \mathbf{a} - \mathbf{c} , find an example of a 2 × 3 matrix \mathbf{A} satisfying the given matrix equation or explain why there is no such \mathbf{A} . **a.** $\mathbf{A}\mathbf{B} = \mathbf{I}_2$. [4] **b.** $\mathbf{B}\mathbf{A} = \mathbf{I}_2$. [3] **c.** $\mathbf{A}\mathbf{A}^T = \mathbf{I}_2$. [3] [Total = 40]