Mathematics 135H - Linear algebra I: matrix algebra

Trent University, Fall 2007

MATH 135H Test

2 November, 2007
Time: 50 minutes

Instructions

- Show all your work. Legibly!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator, and either (both sides of) one 8.5×11 aid sheet or a copy (annotated as you like) of Formula for Success.

1. Consider the planes defined by the equations $x+2 y+z=6$ and $2 x+y+z=6$ in three-dimensional space.
a. Sketch the parts of the two planes and the line in which they intersect that lie in the first octant (i.e. where $x \geq 0, y \geq 0$, and $z \geq 0$). [4]
b. Give a parametric description of the line in which the two planes intersect. [3]
c. Determine whether the two planes are parallel, perpendicular, or neither. [3]
2. Let $\mathbf{a}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right], \mathbf{b}=\left[\begin{array}{c}8 \\ -2 \\ 2\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$.
a. Determine whether $\mathbf{d}=\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ is in $\operatorname{Span}\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ or not. [5]
b. Determine whether \mathbf{a}, \mathbf{b}, and \mathbf{c} are linearly dependent or independent. [5]
3. Consider the following system of linear equations.

$$
\begin{aligned}
& x \quad+z=1 \\
& x \quad-z=0 \\
& x+c y+z=0
\end{aligned}
$$

a. Find the solution(s), if any, of the given system in terms of c, the coefficient of y in the third equation. [6]
b. For which values of c are there: i. No solutions? ii. Exactly one solution? iii. Many solutions? Explain why in each case. [4]
4. Let $\mathbf{B}=\left[\begin{array}{cc}1 & -1 \\ 2 & 0 \\ 1 & 3\end{array}\right]$ and $\mathbf{I}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. In each of $\mathbf{a}-\mathbf{c}$, find an example of a 2×3 matrix \mathbf{A} satisfying the given matrix equation or explain why there is no such \mathbf{A}.
a. $\mathbf{A B}=\mathbf{I}_{2}$. [4]
b. $\mathbf{B A}=\mathbf{I}_{2}$. [3]
c. $\mathbf{A} \mathbf{A}^{T}=\mathbf{I}_{2}$. [3]

$$
[\text { Total }=40]
$$

