Mathematics 135H - Linear algebra I: matrix algebra Trent University, Fall 2007

Solutions to Assignment \#5

1. Find the matrix R_{θ}^{z} of a rotation through an angle of θ about the z-axis. [1]

Note: This rotation leaves the z-coordinate unchanged. As with rotations about the origin in \mathbb{R}^{2}, θ is measured counterclockwise, starting with the positive x-axis, when the $x y$-plane is viewed from above (i.e. from the positive z-axis).

Solution. Since the matrix leaves the z-coordinate unchanged and the z-coordinate should not affect what the matrix does to the x - and y-coordinates, the third row and the third column must look like

$$
\left[\begin{array}{lll}
& & 0 \\
& & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

In terms of the x - and y-coordinates, this matrix behaves just like a rotation through an angle of θ about the origin in \mathbb{R}^{2}. Filling the missing part of the matrix in accordinagly gives

$$
R_{\theta}^{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2. Find the matrix R_{ϕ}^{y} of a rotation through an angle of ϕ about the y-axis. [1]

Note: This rotation leaves the y-coordinate unchanged. The angle ϕ should be measured counterclockwise, starting with the positive x-axis, when the $x z$-plane is viewed from the positive y-axis.
Solution. This is almost like Problem 1 above, the obvious exceptions being calling the angle ϕ instead of θ and the interchanging the roles of the variables y and z. Thus the first cut at R_{ϕ}^{y} would probably be:

$$
\left[\begin{array}{ccc}
\cos (\phi) & 0 & -\sin (\phi) \\
0 & 1 & 0 \\
\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]
$$

The problem is that this matrix is for a rotation in the wrong direction: as viewed from the positive y-axis, it rotates things clockwise about the y-axis, rather than counterclockwise. Consider, for example, a rotation of $\phi=45^{\circ}$ by this matrix. $\cos \left(45^{\circ}\right)=\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$, so in this case the matrix would be:

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Note, however, that

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

which is not counterclockwise ...
This problem can be fixed by plugging in the negative of the desired angle into the matrix above. Thus, since $\cos (-\phi)=\cos (\phi)$ and $\sin (-\phi)=-\sin (\phi)$,

$$
R_{\phi}^{y}=\left[\begin{array}{ccc}
\cos (-\phi) & 0 & -\sin (-\phi) \\
0 & 1 & 0 \\
\sin (-\phi) & 0 & \cos (-\phi)
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]
$$

is the matrix we want.
Note: For those of you who are into linear transformations, the matrix of the linear transformation that swaps the roles of y and z and reverses orientation along the y-axis (which is basically what we had to do above) is $\mathbf{S}_{y z}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$. One way to get R_{ϕ}^{y} is to do $\mathbf{S}_{y z}$ first, which swaps the y - and z-axes and reverses orientation along the y-axis, do a rotation through an angle ϕ about the (new) z-axis by doing R_{ϕ}^{z}, and then restore the original y - and z-axes by doing $\mathbf{S}_{y z}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$. You can check for yourself that this works by multiplying things out below:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
\cos (\phi) & -\sin (\phi) & 0 \\
\sin (\phi) & \cos (\phi) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]
$$

3. Find the matrix R_{α}^{x} of a rotation through an angle of α about the x-axis. [1]

Note: This rotation leaves the x-coordinate unchanged. The angle α should be measured counterclockwise, starting with the positive y-axis, when the $y z$-plane is viewed from the positive x-axis.
Solution. This is just like Problem 2 above except that we start with R_{ϕ}^{y} instead of R_{θ}^{z}, we're calling the angle α instead of ϕ, the variables x and y exchange roles, and orientation must be reversed again. To cut to the chase,

$$
R_{\alpha}^{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & -\sin (\alpha) \\
0 & \sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

4. Find a combination of the rotations you obtained in $\mathbf{1 - 3}$ that moves the x-axis onto the line through the origin with direction vector [11 $11 \begin{array}{ll}1 & 1\end{array}$. [2]
Solution. We will move the x-axis onto the line through the origin with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ in stages. First, we will do a rotation about the y-axis that moves the x-axis to another line in the $x z$-plane, and then follow this with a rotation about the z-axis that will move this line to the line with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$.

The key to making this strategy work is figuring out what the intermediate line needs to be, and the key to that is the observation that a rotation about the z-axis must preserve the angle that a line though the origin makes with the z-axis. Thus the intermedite line must make the same angle, call it α, with the z-axis that the line with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ does.

We can, in principle, compute α pretty easily by computing the angle between direction vectors, $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ for our target line and, say, $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ for the z-axis:

$$
\cos (\alpha)=\frac{\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]}{\left\|\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\right\|\left\|\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\right\|}=\frac{1 \cdot 0+1 \cdot 0+1 \cdot 1}{\sqrt{1^{2}+1^{2}+1^{2}} \sqrt{0^{2}+0^{2}+1^{2}}}=\frac{1}{\sqrt{3}}
$$

From this, with the use of a calculator, we can compute that that $\alpha \approx 54.74^{\circ}$.
The first of our rotations, about the y-axis, must take the positive x-axis into the line through the origin in the $x z$-plane between the positive x - and z-axes that makes an angle α with the positive z-axis. To accomplish this will require a rotation about the y-axis through an angle of $\beta=90^{\circ}-\alpha$ from the positive x-axis in the direction of the positive z-axis. Note that this is a rotation clockwise as seen from the positive y-axis, so we must plug in $\phi=-\beta=\alpha-90^{\circ}$ into the matrix R_{ϕ}^{y} obtained in 2.

To actually work the matrix R_{ϕ}^{y} out, we need to compute $\cos (\phi)$ and $\sin (\phi)$. To do this we will use the difference formulas for \cos and sin, namely $\cos (a-b)=\cos (a) \cos (b)+$
$\sin (a) \sin (b)$ and $\sin (a-b)=\sin (a) \cos (b)-\cos (a) \sin (b)$, and the fact that $\sin ^{2}(c)=$ $\sqrt{1-\cos ^{2}(c)}$.

$$
\begin{aligned}
\cos (\phi) & =\cos \left(\alpha-90^{\circ}\right)=\cos (\alpha) \cos \left(90^{\circ}\right)+\sin (\alpha) \sin \left(90^{\circ}\right) \\
& =\frac{1}{\sqrt{3}} \cdot 0+\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^{2}} \cdot 1=\frac{\sqrt{2}}{\sqrt{3}} \\
\sin (\phi) & =\sin \left(\alpha-90^{\circ}\right)=\sin (\alpha) \cos \left(90^{\circ}\right)-\cos (\alpha) \sin \left(90^{\circ}\right) \\
& =\frac{\sqrt{2}}{\sqrt{3}} \cdot 0-\frac{1}{\sqrt{3}} \cdot 1=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Thus the matrix we want for the rotation about the y-axis is:

$$
R_{\phi}^{y}=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]
$$

The matrix R_{ϕ}^{y} obtained above moves the line with direction vector $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ (i.e. the x-axis) to the line with direction vector $\left[\begin{array}{ccc}\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}}\end{array}\right]$ via a rotation about the y-axis. It remains to move the latter line to the line with direction vector [$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$ via a suitable rotation about the z-axis. Again, the key is to determine the necessary angle, θ, of the rotation.

The desired rotation keeps the z-axis fixed, so it must move the plane determined by the lines with direction vectors $\left[\begin{array}{ccc}\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}}\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ (i.e. the z-axis) to the plane determined by the lines with direction vectors $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ (i.e. the z-axis). The acute angle between the planes - which is the angle theta we wish to determine - is the same as the acute angle between their normal vectors. We can find the normal vector to each plane by taking the cross-product of the two direction vectors in that plane:

$$
\left[\begin{array}{lll}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right] \times\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\
0 & 0 & 1
\end{array}\right|=-\frac{\sqrt{2}}{\sqrt{3}} \mathbf{j}=\left[\begin{array}{lll}
0 & -\frac{\sqrt{2}}{\sqrt{3}} & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \times\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|=\mathbf{i}-\mathbf{j}=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right] .
$$

The acute angle θ between the normal vectors can now determined:

$$
\cos (\theta)=\frac{\left[\begin{array}{lll}
0 & -\frac{\sqrt{2}}{\sqrt{3}} & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]}{\left\|\left[\begin{array}{lll}
0 & -\frac{\sqrt{2}}{\sqrt{3}} & 0
\end{array}\right]\right\|\left\|\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]\right\|}=\frac{\frac{\sqrt{2}}{\sqrt{3}}}{\frac{\sqrt{2}}{\sqrt{3}} \cdot \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

It follows that $\theta=45^{\circ}$.
Thus the matrix we want for the rotation about the z-axis is:

$$
R_{\theta}^{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It follows that a combination of rotations that moves the x-axis onto the line through the origin with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is:

$$
R_{\theta}^{z} R_{\phi}^{y}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]
$$

Note that the rotation which goes first goes on the right of the matrix product.
We can check that this does the job by checking where a direction vector of the positive x-axis, say $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, goes:

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]
$$

Since $\left[\begin{array}{lll}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right]$ is parallel to $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right], R_{\theta}^{z} R_{\phi}^{y}$ does indeed move the x-axis onto the line through the origin with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$, as desired.
5. Find a combination of the rotations you obtained in $\mathbf{1 - 3}$ that moves the line through the origin with direction vector [$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$ onto the x-axis. [1]
Solution. Here all we need to do is what we did in 4 in reverse: instead of doing $R_{\theta}^{z} R_{\phi}^{y}$ as in 4 , we do $R_{-\phi}^{y} R_{-\theta}^{z}$. (Note that we need to reverse the order in which we do the rotations as well as reverse the rotations themselves.) Since we already know R_{θ}^{z} and R_{ϕ}^{y} from 4, we can easily work out $R_{-\phi}^{y}$ and $R_{-\theta}^{z}$ using the relations $\cos (-x)=\cos (x)$ and $\sin (-x)=-\sin (x)$.

First, since

$$
R_{\theta}^{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

we have

$$
R_{-\theta}^{z}=\left[\begin{array}{ccc}
\cos (-\theta) & -\sin (-\theta) & 0 \\
\sin (-\theta) & \cos (-\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Second, since

$$
R_{\phi}^{y}=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]
$$

we have

$$
R_{-\phi}^{y}=\left[\begin{array}{ccc}
\cos (-\phi) & 0 & \sin (-\phi) \\
0 & 1 & 0 \\
-\sin (-\phi) & 0 & \cos (-\phi)
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\phi) & 0 & -\sin (\phi) \\
0 & 1 & 0 \\
\sin (\phi) & 0 & \cos (\phi)
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right] .
$$

It follows that a combination of rotations that moves the line through the origin with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ onto the x-axis is:

$$
R_{-\phi}^{y} R_{-\theta}^{z}=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]
$$

It is not hard to check that

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3} \\
0 \\
0
\end{array}\right],
$$

which is a vector parallel to $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, as desired.
6. Find the matrix R of a rotation through an angle of ω about the line through the origin with direction vector [lll 1131$]$. [4]
Note: The angle ω should be measured counterclockwise when the plane $x+y+z=1$ is viewed from the first octant.
Hint: Put together 3-5.
Solution. The strategy here is similar to that described in the note after the solution to 2: move the line with direction vector [$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$ to the x-axis (as in 5), execute a rotation of ω about the x-axis (as in $\mathbf{3}$), and then move the x-axis back to the line with direction vector [1 1101$]$ to the x-axis (as in 4). Thus

$$
\begin{aligned}
R & =\left(R_{\theta}^{z} R_{\phi}^{y}\right) R_{\omega}^{x}\left(R_{-\phi}^{y} R_{-\theta}^{z}\right) \\
& =\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\omega) & -\sin (\omega) \\
0 & \sin (\omega) & \cos (\omega)
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right],
\end{aligned}
$$

and we leave it to the reader to multiply the matrices out to get $R \ldots$

