
Mathematics 135H – Linear algebra I: matrix algebra

Trent University, Fall 2007

Solutions to Assignment #5

1. Find the matrix Rz
θ of a rotation through an angle of θ about the z-axis. [1]

Note: This rotation leaves the z-coordinate unchanged. As with rotations about the
origin in R

2, θ is measured counterclockwise, starting with the positive x-axis,
when the xy-plane is viewed from above (i.e. from the positive z-axis).

Solution. Since the matrix leaves the z-coordinate unchanged and the z-coordinate should
not affect what the matrix does to the x- and y-coordinates, the third row and the third
column must look like





0
0

0 0 1



 .

In terms of the x- and y-coordinates, this matrix behaves just like a rotation through an
angle of θ about the origin in R

2. Filling the missing part of the matrix in accordinagly
gives

Rz
θ =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 . �

2. Find the matrix R
y
φ of a rotation through an angle of φ about the y-axis. [1]

Note: This rotation leaves the y-coordinate unchanged. The angle φ should be measured
counterclockwise, starting with the positive x-axis, when the xz-plane is viewed
from the positive y-axis.

Solution. This is almost like Problem 1 above, the obvious exceptions being calling the
angle φ instead of θ and the interchanging the roles of the variables y and z. Thus the
first cut at R

y
φ would probably be:





cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)





The problem is that this matrix is for a rotation in the wrong direction: as viewed from the
positive y-axis, it rotates things clockwise about the y-axis, rather than counterclockwise.
Consider, for example, a rotation of φ = 45◦ by this matrix. cos (45◦) = sin (45◦) = 1√

2
,

so in this case the matrix would be:





1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2





1



Note, however, that




1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2









1
0
0



 =





1√
2

0
1√
2



 ,

which is not counterclockwise . . .

This problem can be fixed by plugging in the negative of the desired angle into the
matrix above. Thus, since cos(−φ) = cos(φ) and sin(−φ) = − sin(φ),

R
y
φ =





cos(−φ) 0 − sin(−φ)
0 1 0

sin(−φ) 0 cos(−φ)



 =





cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)





is the matrix we want. �

Note: For those of you who are into linear transformations, the matrix of the linear
transformation that swaps the roles of y and z and reverses orientation along the y-axis

(which is basically what we had to do above) is Syz =

[

1 0 0

0 0 −1

0 1 0

]

. One way to get R
y
φ is

to do Syz first, which swaps the y- and z-axes and reverses orientation along the y-axis,
do a rotation through an angle φ about the (new) z-axis by doing Rz

φ, and then restore

the original y- and z-axes by doing S−1

yz =

[

1 0 0

0 0 1

0 −1 0

]

. You can check for yourself that this

works by multiplying things out below:





1 0 0
0 0 1
0 −1 0









cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1









1 0 0
0 0 −1
0 1 0



 =





cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)





3. Find the matrix Rx
α of a rotation through an angle of α about the x-axis. [1]

Note: This rotation leaves the x-coordinate unchanged. The angle α should be measured
counterclockwise, starting with the positive y-axis, when the yz-plane is viewed
from the positive x-axis.

Solution. This is just like Problem 2 above except that we start with R
y
φ instead of Rz

θ,
we’re calling the angle α instead of φ, the variables x and y exchange roles, and orientation
must be reversed again. To cut to the chase,

Rx
α =





1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)



 . �

2



4. Find a combination of the rotations you obtained in 1–3 that moves the x-axis onto
the line through the origin with direction vector [ 1 1 1 ]. [2]

Solution. We will move the x-axis onto the line through the origin with direction vector
[ 1 1 1 ] in stages. First, we will do a rotation about the y-axis that moves the x-axis
to another line in the xz-plane, and then follow this with a rotation about the z-axis that
will move this line to the line with direction vector [ 1 1 1 ].

The key to making this strategy work is figuring out what the intermediate line needs
to be, and the key to that is the observation that a rotation about the z-axis must preserve
the angle that a line though the origin makes with the z-axis. Thus the intermedite line
must make the same angle, call it α, with the z-axis that the line with direction vector
[ 1 1 1 ] does.

We can, in principle, compute α pretty easily by computing the angle between direc-
tion vectors, [ 1 1 1 ] for our target line and, say, [ 0 0 1 ] for the z-axis:

cos(α) =
[ 1 1 1 ] · [ 0 0 1 ]

‖ [ 1 1 1 ] ‖ ‖ [ 0 0 1 ] ‖ =
1 · 0 + 1 · 0 + 1 · 1√

12 + 12 + 12
√

02 + 02 + 12
=

1√
3

From this, with the use of a calculator, we can compute that that α ≈ 54.74◦.
The first of our rotations, about the y-axis, must take the positive x-axis into the line

through the origin in the xz-plane between the positive x- and z-axes that makes an angle
α with the positive z-axis. To accomplish this will require a rotation about the y-axis
through an angle of β = 90◦ − α from the positive x-axis in the direction of the positive
z-axis. Note that this is a rotation clockwise as seen from the positive y-axis, so we must
plug in φ = −β = α − 90◦ into the matrix R

y
φ

obtained in 2.

To actually work the matrix R
y
φ out, we need to compute cos(φ) and sin(φ). To do

this we will use the difference formulas for cos and sin, namely cos(a− b) = cos(a) cos(b)+

3



sin(a) sin(b) and sin(a − b) = sin(a) cos(b) − cos(a) sin(b), and the fact that sin2(c) =
√

1 − cos2(c).

cos(φ) = cos (α − 90◦) = cos(α) cos (90◦) + sin(α) sin (90◦)

=
1√
3
· 0 +

√

1 −
(

1√
3

)2

· 1 =

√
2√
3

sin(φ) = sin (α − 90◦) = sin(α) cos (90◦) − cos(α) sin (90◦)

=

√
2√
3
· 0 − 1√

3
· 1 = − 1√

3

Thus the matrix we want for the rotation about the y-axis is:

R
y
φ =





cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)



 =





√
2√
3

0 − 1√
3

0 1 0
1√
3

0
√

2√
3





The matrix R
y
φ obtained above moves the line with direction vector [ 1 0 0 ] (i.e.

the x-axis) to the line with direction vector
[ √

2√
3

0 1√
3

]

via a rotation about the y-axis.

It remains to move the latter line to the line with direction vector [ 1 1 1 ] via a suitable
rotation about the z-axis. Again, the key is to determine the necessary angle, θ, of the
rotation.

The desired rotation keeps the z-axis fixed, so it must move the plane determined by

the lines with direction vectors
[ √

2√
3

0 1√
3

]

and [ 0 0 1 ] (i.e. the z-axis) to the plane

determined by the lines with direction vectors [ 1 1 1 ] and [ 0 0 1 ] (i.e. the z-axis).
The acute angle between the planes – which is the angle theta we wish to determine – is
the same as the acute angle between their normal vectors. We can find the normal vector
to each plane by taking the cross-product of the two direction vectors in that plane:

[ √
2√
3

0 1√
3

]

× [ 0 0 1 ] =

∣

∣

∣

∣

∣

∣

i j k
√

2√
3

0 1√
3

0 0 1

∣

∣

∣

∣

∣

∣

= −
√

2√
3
j =

[

0 −
√

2√
3

0
]

and

[ 1 1 1 ] × [ 0 0 1 ] =

∣

∣

∣

∣

∣

∣

i j k

1 1 1
0 0 1

∣

∣

∣

∣

∣

∣

= i − j = [ 1 −1 0 ] .

The acute angle θ between the normal vectors can now be determined:

cos(θ) =

[

0 −
√

2√
3

0
]

· [ 1 −1 0 ]

‖
[

0 −
√

2√
3

0
]

‖ ‖ [ 1 −1 0 ] ‖
=

√
2√
3

√
2√
3
·
√

2
=

1√
2
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It follows that θ = 45◦.
Thus the matrix we want for the rotation about the z-axis is:

Rz
θ =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 =





1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1





It follows that a combination of rotations that moves the x-axis onto the line through
the origin with direction vector [ 1 1 1 ] is:

Rz
θR

y
φ =





1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1









√
2√
3

0 − 1√
3

0 1 0
1√
3

0
√

2√
3



 =







1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0
√

2√
3







Note that the rotation which goes first goes on the right of the matrix product.
We can check that this does the job by checking where a direction vector of the positive

x-axis, say [ 1 0 0 ], goes:







1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0
√

2√
3











1
0
0



 =







1√
3

1√
3

1√
3







Since
[

1√
3

1√
3

1√
3

]

is parallel to [ 1 1 1 ], Rz
θR

y
φ does indeed move the x-axis onto

the line through the origin with direction vector [ 1 1 1 ], as desired. �

5. Find a combination of the rotations you obtained in 1–3 that moves the line through
the origin with direction vector [ 1 1 1 ] onto the x-axis. [1]

Solution. Here all we need to do is what we did in 4 in reverse: instead of doing Rz
θR

y
φ

as in 4, we do R
y
−φRz

−θ. (Note that we need to reverse the order in which we do the

rotations as well as reverse the rotations themselves.) Since we already know Rz
θ and R

y
φ

from 4, we can easily work out R
y
−φ and Rz

−θ using the relations cos(−x) = cos(x) and
sin(−x) = − sin(x).

First, since

Rz
θ =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 =





1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1



 ,

we have

Rz
−θ =





cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1



 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1



 =





1√
2

1√
2

0

− 1√
2

1√
2

0
0 0 1



 .
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Second, since

R
y
φ =





cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)



 =





√
2√
3

0 − 1√
3

0 1 0
1√
3

0
√

2√
3



 ,

we have

R
y
−φ =





cos(−φ) 0 sin(−φ)
0 1 0

− sin(−φ) 0 cos(−φ)



 =





cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)



 =





√
2√
3

0 1√
3

0 1 0
− 1√

3
0

√
2√
3



 .

It follows that a combination of rotations that moves the line through the origin with
direction vector [ 1 1 1 ] onto the x-axis is:

R
y
−φRz

−θ =





√
2√
3

0 1√
3

0 1 0
− 1√

3
0

√
2√
3









1√
2

1√
2

0

− 1√
2

1√
2

0
0 0 1



 =







1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

√
2√
3







It is not hard to check that







1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

√
2√
3











1
1
1



 =





√
3

0
0



 ,

which is a vector parallel to [ 1 0 0 ], as desired. �

6. Find the matrix R of a rotation through an angle of ω about the line through the
origin with direction vector [ 1 1 1 ]. [4]

Note: The angle ω should be measured counterclockwise when the plane x + y + z = 1
is viewed from the first octant.

Hint: Put together 3–5.

Solution. The strategy here is similar to that described in the note after the solution to
2: move the line with direction vector [ 1 1 1 ] to the x-axis (as in 5), execute a rotation
of ω about the x-axis (as in 3), and then move the x-axis back to the line with direction
vector [ 1 1 1 ] to the x-axis (as in 4). Thus

R =
(

Rz
θR

y
φ

)

Rx
ω

(

R
y
−φRz

−θ

)

=







1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0
√

2√
3











1 0 0
0 cos(ω) − sin(ω)
0 sin(ω) cos(ω)











1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

√
2√
3







,

and we leave it to the reader to multiply the matrices out to get R . . . �
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