Mathematics 135H - Linear algebra I: matrix algebra
 Trent University, Fall 2007

Solutions to Assignment \#4

Recall the definition given in Assignment \#4:
\star A $k \times k$ matrix \mathbf{B} absorbs the $k \times k$ matrix \mathbf{A} if $\mathbf{B A}^{m}=\mathbf{A}^{m} \mathbf{B}=\mathbf{B}$ for every $m>0$. The key to much of what follows is that this definition boils down to something a little simpler:

- A $k \times k$ matrix \mathbf{B} absorbs a $k \times k$ matrix \mathbf{A} exactly if $\mathbf{B A}=\mathbf{A B}=\mathbf{B}$.

It's not hard to see why this is so. First, if the original definition is true, $\mathbf{B} \mathbf{A}^{m}=$ $\mathbf{A}^{m} \mathbf{B}=\mathbf{B}$ must be true for $m=1$ in particular. Second, if $\mathbf{B A}=\mathbf{A B}=\mathbf{B}$ is true, then, for example, $\mathbf{B A}^{2}=\mathbf{B A A}=\mathbf{B A B}$. It's not hard to see that it must follow from such reasoning that $\mathbf{B A} \mathbf{A}^{m}=\mathbf{A}^{m} \mathbf{B}=\mathbf{B}$ for every $m>0$.

Using the simpler version of the definition reduces the amount of work required in some of the solutions below.

1. Verify that $\mathbf{0}_{k}$ absorbs \mathbf{A}, for any $k \times k$ matrix \mathbf{A}. [2]

Solution. We noted in class that if \mathbf{A} is a $k \times k$ matrix, then $\mathbf{A 0}_{k}=\mathbf{0}_{k} \mathbf{A}=\mathbf{0}_{k}$ (among other algebraic properties of matrix multiplication). By the simpler definition of absorbtion given above, this means that $\mathbf{0}_{k}$ absorbs \mathbf{A} for any $k \times k$ matrix \mathbf{A}.

Note: If you need to convince yourself that $\mathbf{A} \mathbf{0}_{k}=\mathbf{0}_{k} \mathbf{A}=\mathbf{0}_{k}$, note first that $0 \mathbf{B}=\mathbf{0}_{k}$ for any $k \times k$ matrix \mathbf{B}. Then, for example, $\mathbf{A} \mathbf{0}_{k}=\mathbf{A}\left(00_{k}\right)=0\left(\mathbf{A} \mathbf{0}_{k}\right)=\mathbf{0}_{k}$.
2. Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_{k}$ such that \mathbf{A} absorbs itself. [2]

Solution. \mathbf{I}_{k} does the job by the simpler definition of absorbtion, because $\mathbf{I}_{k} \mathbf{I}_{k}=\mathbf{I}_{k}$.
3. Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_{k}$ such that $\mathbf{0}_{k}$ is the only $k \times k$ matrix that absorbs A. [3]
Solution. We'll do this for $k=2$, though the gimmick we'll use is easily adaptable to any $k \geq 2$. Note that by Problem $\mathbf{1}, \mathbf{0}_{2}$ absorbs any 2×2 matrix.

Let $\mathbf{A}=\frac{1}{2} \mathbf{I}_{2}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right]$, and suppose that $\mathbf{B}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is a 2×2 matrix that absorbs A. Then

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\mathbf{B}=\mathbf{A B}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\frac{a}{2} & \frac{b}{2} \\
\frac{c}{2} & \frac{d}{2}
\end{array}\right],
$$

so we must have $a=\frac{a}{2}, b=\frac{b}{2}, c=\frac{c}{2}$, and $d=\frac{d}{2}$. This can only occur if $a=b=c=d=0$, so it must be the case that if \mathbf{B} absorbs \mathbf{A}, then $\mathbf{B}=\mathbf{0}_{2}$.
4. Suppose the \mathbf{A} is a $k \times k$ matrix which is absorbed by a matrix \mathbf{B} which has an inverse. Show that it must be the case that $\mathbf{A}=\mathbf{I}_{k}$. [3]
Solution. Suppose the \mathbf{A} is a $k \times k$ matrix which is absorbed by a matrix \mathbf{B} that has an inverse. By the simpler definition of absorbtion, this means that $\mathbf{A B}=\mathbf{B}$. Multiplying this equation on both sides by \mathbf{B}^{-1} (from the right) gives:

$$
\mathbf{A}=\mathbf{A} \mathbf{I}_{k}=\mathbf{A}\left(\mathbf{B B}^{-1}\right)=(\mathbf{A B}) \mathbf{B}^{-1}=\mathbf{B B}^{-1}=\mathbf{I}_{k}
$$

Hence $\mathbf{A}=\mathbf{I}_{k}$, as desired.

