Mathematics 135H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2007

Solutions to Assignment #4

Recall the definition given in Assignment #4:

* A $k \times k$ matrix **B** absorbs the $k \times k$ matrix **A** if $\mathbf{BA}^m = \mathbf{A}^m \mathbf{B} = \mathbf{B}$ for every m > 0. The key to much of what follows is that this definition boils down to something a little simpler:

• A $k \times k$ matrix **B** absorbs a $k \times k$ matrix **A** exactly if **BA** = **AB** = **B**.

It's not hard to see why this is so. First, if the original definition is true, $\mathbf{B}\mathbf{A}^m = \mathbf{A}^m \mathbf{B} = \mathbf{B}$ must be true for m = 1 in particular. Second, if $\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} = \mathbf{B}$ is true, then, for example, $\mathbf{B}\mathbf{A}^2 = \mathbf{B}\mathbf{A}\mathbf{A} = \mathbf{B}\mathbf{A}\mathbf{B}$. It's not hard to see that it must follow from such reasoning that $\mathbf{B}\mathbf{A}^m = \mathbf{A}^m\mathbf{B} = \mathbf{B}$ for every m > 0.

Using the simpler version of the definition reduces the amount of work required in some of the solutions below.

1. Verify that $\mathbf{0}_k$ absorbs \mathbf{A} , for any $k \times k$ matrix \mathbf{A} . [2]

Solution. We noted in class that if **A** is a $k \times k$ matrix, then $\mathbf{A0}_k = \mathbf{0}_k \mathbf{A} = \mathbf{0}_k$ (among other algebraic properties of matrix multiplication). By the simpler definition of absorbtion given above, this means that $\mathbf{0}_k$ absorbs **A** for any $k \times k$ matrix **A**.

Note: If you need to convince yourself that $\mathbf{A0}_k = \mathbf{0}_k \mathbf{A} = \mathbf{0}_k$, note first that $\mathbf{0B} = \mathbf{0}_k$ for any $k \times k$ matrix **B**. Then, for example, $\mathbf{A0}_k = \mathbf{A}(\mathbf{00}_k) = \mathbf{0}(\mathbf{A0}_k) = \mathbf{0}_k$.

2. Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_k$ such that \mathbf{A} absorbs itself. [2]

Solution. I_k does the job by the simpler definition of absorbtion, because $I_k I_k = I_k$.

3. Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_k$ such that $\mathbf{0}_k$ is the only $k \times k$ matrix that absorbs \mathbf{A} . [3]

Solution. We'll do this for k = 2, though the gimmick we'll use is easily adaptable to any $k \ge 2$. Note that by Problem 1, $\mathbf{0}_2$ absorbs any 2×2 matrix.

Let $\mathbf{A} = \frac{1}{2}\mathbf{I}_2 = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix}$, and suppose that $\mathbf{B} = \begin{bmatrix} a & b\\ c & d \end{bmatrix}$ is a 2×2 matrix that absorbs

so we must have $a = \frac{a}{2}$, $b = \frac{b}{2}$, $c = \frac{c}{2}$, and $d = \frac{d}{2}$. This can only occur if a = b = c = d = 0, so it must be the case that if **B** absorbs **A**, then **B** = **0**₂.

4. Suppose the **A** is a $k \times k$ matrix which is absorbed by a matrix **B** which has an inverse. Show that it must be the case that $\mathbf{A} = \mathbf{I}_k$. [3]

Solution. Suppose the **A** is a $k \times k$ matrix which is absorbed by a matrix **B** that has an inverse. By the simpler definition of absorbtion, this means that AB = B. Multiplying this equation on both sides by B^{-1} (from the right) gives:

$$\mathbf{A} = \mathbf{A}\mathbf{I}_k = \mathbf{A}\left(\mathbf{B}\mathbf{B}^{-1}\right) = (\mathbf{A}\mathbf{B})\mathbf{B}^{-1} = \mathbf{B}\mathbf{B}^{-1} = \mathbf{I}_k$$

Hence $\mathbf{A} = \mathbf{I}_k$, as desired.