Mathematics 135H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2007

Solutions to Quizzes

Quiz #1. Friday, 21 September, 2007. [5 minutes]

1. Find the acute angle between the vectors $\mathbf{a} = [2, 1, 0]$ and $\mathbf{b} = [2, 1, \sqrt{5}]$. [5] **Solution.** Suppose θ is the acute angle between \mathbf{a} and \mathbf{b} . Then

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{[2, 1, 0] \cdot [2, 1, \sqrt{5}]}{\|[2, 1, 0]\| \| [2, 1, \sqrt{5}]\|}$$
$$= \frac{2 \cdot 2 + 1 \cdot 1 + 0 \cdot \sqrt{5}}{\sqrt{2^2 + 1^2 + 0^2} \sqrt{2^2 + 1^2 + (\sqrt{5})^2}}$$
$$= \frac{5}{\sqrt{5}\sqrt{10}} = \frac{5}{\sqrt{5}\sqrt{5}\sqrt{2}} = \frac{1}{\sqrt{2}},$$

so $\theta = 45^{\circ}$ or $\theta = \frac{\pi}{4}$ radians.

Quiz #2. Friday, 28 September, 2007. [10 minutes]

1. Find a linear equation ax + by + cz = d of the plane containing both of the lines given by the parametric equations

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 7 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 7 \end{bmatrix} + s \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}.$$

(Note that both of these lines pass through the point (0, 6, 7).) [5]

Solution. To obtain the normal vector [a, b, c] of the plane we need a vector which is perpendicular to the direction vectors of both lines. The cross product of the direction vectors will do:

$$\begin{bmatrix} 1\\0\\2 \end{bmatrix} \times \begin{bmatrix} -1\\2\\1 \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 2\\-1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 2\\2 & 1 \end{vmatrix} \mathbf{i} + \begin{vmatrix} 1 & 2\\-1 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 0\\-1 & 2 \end{vmatrix} \mathbf{k}$$
$$= (0-4)\mathbf{i} - (1-(-2))\mathbf{j} + (2-0)\mathbf{k} = -4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} = \begin{bmatrix} -4\\-3\\2 \end{bmatrix}$$

An equation for the plane is therefore -4x - 3y + 2z = d. To determine d note that the plane containing both lines must also pass through the point (0, 6, 7), so

$$d = -4 \cdot 0 - 3 \cdot 6 + 2 \cdot 7 = 0 - 18 + 14 = -4.$$

Hence a linear equation of the plane containing both of the given lines is

 $-4x - 3y + 2z = -4. \quad \blacksquare$

Quiz #3. Friday, 5 Octoberber, 2007. [10 minutes]

1. Solve the following system of linear equations. [5]

$$x + y + z = 12$$
$$x - y + 2z = 18$$
$$2x + 3y - z = 24$$

Solution. We'll set up the given system of equations in augmented matrix form and solve it using Gauss-Jordan elimination. To save some space, we'll do two row operations at a time when we can safely do so.

$$\begin{bmatrix} 1 & 1 & 1 & | & 12 \\ 1 & -1 & 2 & | & 18 \\ 2 & 3 & -1 & | & 24 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 1 & 1 & | & 12 \\ 0 & -2 & 1 & | & 6 \\ 0 & 1 & -3 & | & 0 \\ R_2 \leftrightarrow R_3 \begin{bmatrix} 1 & 1 & 1 & | & 12 \\ 0 & 1 & -3 & 0 \\ 0 & -2 & 1 & | & 6 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & 4 & | & 12 \\ 0 & 1 & -3 & | & 0 \\ R_3 + 2R_2 \begin{bmatrix} 1 & 0 & 4 & | & 12 \\ 0 & 1 & -3 & | & 0 \\ 0 & 0 & -5 & | & 6 \end{bmatrix}$$
$$\implies \begin{bmatrix} 1 & 0 & 4 & | & 12 \\ 0 & 1 & -3 & | & 0 \\ 0 & 0 & -5 & | & 6 \end{bmatrix} \xrightarrow{R_1 - 4R_3} \begin{bmatrix} 1 & 0 & 0 & | & \frac{84}{5} \\ 0 & 1 & 0 & | & -\frac{18}{5} \\ 0 & 0 & 1 & | & -\frac{6}{5} \end{bmatrix}$$

We can now read off the solution from the final augmented matrix: $x = \frac{84}{5}$, $y = -\frac{18}{5}$, and $z = -\frac{6}{5}$.

Quiz #4. Friday, 12 Octoberber, 2007. [10 minutes]

1. Determine whether
$$\begin{bmatrix} 2\\4\\6 \end{bmatrix}$$
 is in Span $\left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$. Show your reasoning. [5]

Solution I. By hit and miss fiddling, or however, observe that:

$$\begin{bmatrix} 2\\4\\6 \end{bmatrix} = 4 \begin{bmatrix} 0\\1\\1 \end{bmatrix} + 2 \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

It follows that
$$\begin{bmatrix} 2\\4\\6 \end{bmatrix}$$
 is in the span of
$$\begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
 and
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, and hence is also in the span of all
three of
$$\begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
,
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, and
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
.

Solution II. More systematically, note that, by definition, $\begin{bmatrix} 2\\4\\6 \end{bmatrix}$ is in the span of $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$,

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ if there are scalars } a, b, \text{ and } c \text{ such that:}$$
$$a \begin{bmatrix} 0\\1\\1 \end{bmatrix} + b \begin{bmatrix} 1\\0\\1 \end{bmatrix} + c \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 2\\4\\6 \end{bmatrix}$$

This boils down to checking if there is a solution to the following system of linear equations:

We'll set up the given system of equations in augmented matrix form and solve it using Gaussian elimination and back-substitution. Here goes:

$$\begin{bmatrix} 0 & 1 & 1 & | & 2 \\ 1 & 0 & 1 & | & 4 \\ 1 & 1 & 0 & | & 6 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 1 & 1 & 0 & | & 6 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 1 & -1 & | & 2 \end{bmatrix}$$
$$\implies \begin{bmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ R_3 - R_2 \begin{bmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & -2 & | & 0 \end{bmatrix} \xrightarrow{R_3} \begin{bmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

The last augmented matrix corresponds to the system of linear equations

which we solve by back substitution. Plugging c = 0 into b + c = 2 gives b = 2, and then plugging c = 0 and b = 2 into a + c = 4 gives a = 4.

Since the system of linear equations does have a solution, $\begin{bmatrix} 2\\4\\6 \end{bmatrix}$ is indeed in the span $\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

of
$$\begin{bmatrix} 0\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

Quiz #5. Friday, 19 Octoberber, 2007. *[10 minutes]*

1. Compute
$$(\mathbf{AB})^T$$
 if $\mathbf{A} = \begin{bmatrix} 6 & -3 \\ -1 & 0 \\ 2 & 5 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 1 \end{bmatrix}$. [5]

Solution. We first compute **AB**. Note that since **A** is a 3×2 matrix and **B** is a 2×3 matrix, **AB** must be a 3×3 matrix.

$$\mathbf{AB} = \begin{bmatrix} 6 & -3 \\ -1 & 0 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 6 \cdot 1 + (-3) \cdot 0 & 6 \cdot 2 + (-3) \cdot (-1) & 6 \cdot (-4) + (-3) \cdot 1 \\ (-1) \cdot 1 + 0 \cdot 0 & (-1) \cdot 2 + 0 \cdot (-1) & (-1) \cdot (-4) + 0 \cdot 1 \\ 2 \cdot 1 + 5 \cdot 0 & 2 \cdot 2 + 5 \cdot (-1) & 2 \cdot (-4) + 5 \cdot 1 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & 15 & -27 \\ -1 & -2 & 4 \\ 2 & -1 & -3 \end{bmatrix}$$

We next compute $(\mathbf{AB})^T$. Note that since \mathbf{AB} is a 3×3 matrix, $(\mathbf{AB})^T$ must also be a 3×3 matrix.

$$(\mathbf{AB})^T = \begin{bmatrix} 6 & 15 & -27 \\ -1 & -2 & 4 \\ 2 & -1 & -3 \end{bmatrix}^T = \begin{bmatrix} 6 & -1 & 2 \\ 15 & -2 & -1 \\ -27 & 4 & -3 \end{bmatrix} \blacksquare$$

Quiz #6. Friday, 9 November, 2007. [10 minutes]

1. Find the inverse matrix, if it exists, of $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. [5]

Solution. We set up the appropriate super-augmented matrix and use the Gauss-Jordan method:

Thus the inverse exists and $\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$.

Quiz #7. Friday, 16 November, 2007. [10 minutes]

1. Suppose **A** and **B** are invertible $k \times k$ matrices. Solve the matrix equation

$$\left(\mathbf{X}^{-1}\mathbf{A}\right)^{-1} = \mathbf{A}\left(\mathbf{B}^{2}\mathbf{A}\right)^{-1}$$

for the (invertible) $k \times k$ matrix **X**. Simplify your answer as much as possible. [5] **Solution.** We work to isolate **X**. The first thing to do is to solve for $\mathbf{X}^{-1}\mathbf{A}$:

$$\mathbf{X}^{-1}\mathbf{A} = \left(\left(\mathbf{X}^{-1}\mathbf{A}\right)^{-1}\right)^{-1} = \left(\mathbf{A}\left(\mathbf{B}^{2}\mathbf{A}\right)^{-1}\right)^{-1}$$
$$= \left(\left(\mathbf{B}^{2}\mathbf{A}\right)^{-1}\right)^{-1}\mathbf{A}^{-1} = \mathbf{B}^{2}\mathbf{A}\mathbf{A}^{-1} = \mathbf{B}^{2}$$

It follows that

$$\mathbf{X}^{-1} = \mathbf{X}^{-1} \mathbf{A} \mathbf{A}^{-1} = \mathbf{B}^2 \mathbf{A}^{-1} \,,$$

 \mathbf{SO}

$$\mathbf{X} = (\mathbf{X}^{-1})^{-1} = (\mathbf{B}^2 \mathbf{A}^{-1})^{-1} = (\mathbf{A}^{-1})^{-1} (\mathbf{B}^2)^{-1} = \mathbf{A} \mathbf{B}^{-2}.$$

The relation $X = AB^{-2}$ is as simple as it's going to get without further information about A and B.

Quiz #8. Friday, 23 November, 2007. [10 minutes]

1. Let
$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -1 \\ 7 & 2 & -1 \\ 0 & 3 & 2 \end{bmatrix}$$
. Find bases for row(\mathbf{A}), col(\mathbf{A}), and null(\mathbf{A}). [5]

Solution. Following the all-in-one approach done in class, we'll do Gauss-Jordan elimination on the augmented matrix representing the homogeneous system Ax = 0.

$$\begin{bmatrix} 5 & 1 & -1 & | & 0 \\ 7 & 2 & -1 & | & 0 \\ 0 & 3 & 2 & | & 0 \end{bmatrix} \xrightarrow{\frac{1}{5}R_1} \begin{bmatrix} 1 & \frac{1}{5} & -\frac{1}{5} & | & 0 \\ 7 & 2 & -1 & | & 0 \\ 0 & 3 & 2 & | & 0 \end{bmatrix} \xrightarrow{\approx} \begin{bmatrix} 1 & \frac{1}{5} & -\frac{1}{5} & | & 0 \\ 0 & \frac{3}{5} & \frac{2}{5} & | & 0 \\ 0 & 3 & 2 & | & 0 \end{bmatrix} \xrightarrow{\approx} \begin{bmatrix} 1 & \frac{1}{5} & -\frac{1}{5} & | & 0 \\ 0 & 3 & 2 & | & 0 \end{bmatrix} \xrightarrow{R_1 - \frac{1}{5}R_2} \begin{bmatrix} 1 & 0 & -\frac{1}{3} & | & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The rows of the (coefficient part of the) reduced matrix give a basis for the row space of the original matrix, so $\left\{ \begin{bmatrix} 1\\0\\-\frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0\\1\\\frac{2}{3} \end{bmatrix} \right\}$ is a basis for row(**A**).

The columns of the reduced matrix which contain leading 1s of rows indicate columns of the original matrix which make up a basis for the column space of the original matrix, so $\left\{ \begin{bmatrix} 5\\7\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$ is a basis for col(**A**).

Finally, the reduced augmented matrix corresponds to the system of equations:

Using t as a parameter and setting z = t, it follows that $x = \frac{1}{3}t$ and $y = -\frac{2}{3}t$. Thus the solutions to the homogeneous system $\mathbf{Ax} = \mathbf{0}$ can be written in vector-parameteric form as:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ 1 \end{bmatrix}$$

Hence $\left\{ \begin{bmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ 1 \end{bmatrix} \right\}$ is a basis for null(**A**).

Quiz #9. Friday, 30 November, 2007. [10 minutes]

1. Find the eigenvalues of $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$. [5]

Solution. We need to find the values of λ for which there is a vector $\begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ such that $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$. This boils down to finding the values of λ such that the system of equations

has a non-zero solution. We do this by reducing the augmented matrix of the homogeneous system as far as we can:

$$\begin{bmatrix} 1-\lambda & 0 & | & 0\\ 1 & 2-\lambda & | & 0 \end{bmatrix}$$
$$\underset{\longrightarrow}{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2-\lambda & | & 0\\ 1-\lambda & 0 & | & 0 \end{bmatrix}$$
$$\underset{\longrightarrow}{R_2 - (1-\lambda)R_2} \begin{bmatrix} 1 & 2-\lambda & | & 0\\ 0 & -(1-\lambda)(2-\lambda) & | & 0 \end{bmatrix}$$

At this point it is apparent that if $(1 - \lambda)(2 - \lambda) \neq 0$, the system has only the solution $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, which means that no such λ is an eigenvalue of the given matrix. On the other hand, if $(1 - \lambda)(2 - \lambda) = 0$, the system has infinitely many solutions –

On the other hand, if $(1 - \lambda)(2 - \lambda) = 0$, the system has infinitely many solutions – all but one of which must satisfy $\begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ – so any such λ is an eigenvalue of the given matrix. Since $(1 - \lambda)(2 - \lambda) = 0$ only for $\lambda = 1$ and $\lambda = 2$, these are the eigenvalues of the given matrix.

Quiz #10. Thursday, 6 December, 2007. [10 minutes]

1. Find the determinant of
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
. [5]

Solution. We will row-reduce \mathbf{A} to upper-triangular form to compute $|\mathbf{A}|$.

$$\begin{array}{c} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \stackrel{\longrightarrow}{R_3 - R_1} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \\ \stackrel{\longrightarrow}{R_3 - R_2} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & -1 & -2 \end{bmatrix} \stackrel{\longrightarrow}{=} \begin{array}{c} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & -1 & -2 \end{bmatrix} \\ \stackrel{\longrightarrow}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{3}{2} \end{bmatrix}$$

The only row operation we used that would affect the determinant was the multiplication of row 3 by $-\frac{1}{2}$. Hence

$$\left(-\frac{1}{2}\right)|\mathbf{A}| = \left| \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{3}{2} \end{bmatrix} \right| = 1 \cdot 1 \cdot 1 \cdot \left(-\frac{3}{2}\right) = -\frac{3}{2},$$

and solving for $|\mathbf{A}|$ gives $|\mathbf{A}| = \left(-\frac{3}{2}\right) \div \left(-\frac{1}{2}\right) = 3.$