Mathematics 135H - Linear algebra I: matrix algebra

Trent University, Fall 2007

Solutions to Quizzes

Quiz \#1. Friday, 21 September, 2007. [5 minutes]

1. Find the acute angle between the vectors $\mathbf{a}=[2,1,0]$ and $\mathbf{b}=[2,1, \sqrt{5}]$. [5]

Solution. Suppose θ is the acute angle between \mathbf{a} and \mathbf{b}. Then

$$
\begin{aligned}
\cos (\theta) & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}=\frac{[2,1,0] \cdot[2,1, \sqrt{5}]}{\|[2,1,0]\|\|[2,1, \sqrt{5}]\|} \\
& =\frac{2 \cdot 2+1 \cdot 1+0 \cdot \sqrt{5}}{\sqrt{2^{2}+1^{2}+0^{2}} \sqrt{2^{2}+1^{2}+(\sqrt{5})^{2}}} \\
& =\frac{5}{\sqrt{5} \sqrt{10}}=\frac{5}{\sqrt{5} \sqrt{5} \sqrt{2}}=\frac{1}{\sqrt{2}},
\end{aligned}
$$

so $\theta=45^{\circ}$ or $\theta=\frac{\pi}{4}$ radians.
Quiz \#2. Friday, 28 September, 2007. [10 minutes]

1. Find a linear equation $a x+b y+c z=d$ of the plane containing both of the lines given by the parametric equations

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
6 \\
7
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
6 \\
7
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] .
$$

(Note that both of these lines pass through the point $(0,6,7)$.) [5]
Solution. To obtain the normal vector $[a, b, c]$ of the plane we need a vector which is perpendicular to the direction vectors of both lines. The cross product of the direction vectors will do:

$$
\begin{aligned}
{\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \times\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] } & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 \\
-1 & 2 & 1
\end{array}\right|=\left|\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right| \mathbf{i}+\left|\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right| \mathbf{k} \\
& =(0-4) \mathbf{i}-(1-(-2)) \mathbf{j}+(2-0) \mathbf{k}=-4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}=\left[\begin{array}{c}
-4 \\
-3 \\
2
\end{array}\right]
\end{aligned}
$$

An equation for the plane is therefore $-4 x-3 y+2 z=d$. To determine d note that the plane containing both lines must also pass through the point $(0,6,7)$, so

$$
d=-4 \cdot 0-3 \cdot 6+2 \cdot 7=0-18+14=-4
$$

Hence a linear equation of the plane containing both of the given lines is

$$
-4 x-3 y+2 z=-4
$$

Quiz \#3. Friday, 5 Octoberber, 2007. [10 minutes]

1. Solve the following system of linear equations. [5]

$$
\begin{aligned}
x+y+z & =12 \\
x-y+2 z & =18 \\
2 x+3 y-z & =24
\end{aligned}
$$

Solution. We'll set up the given system of equations in augmented matrix form and solve it using Gauss-Jordan elimination. To save some space, we'll do two row operations at a time when we can safely do so.

$$
\begin{aligned}
& \left.\left[\begin{array}{ccc|c}
1 & 1 & 1 & 12 \\
1 & -1 & 2 & 18 \\
2 & 3 & -1 & 24
\end{array}\right] \underset{R_{2}-R_{1}}{\Longrightarrow} \begin{array}{ccc|c}
\Longrightarrow \\
R_{3}-2 R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 1 \\
0 & 1 & -3
\end{array}\right) 0 .\right] \\
& \underset{R_{2}}{\Longrightarrow}\left[R_{3}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 12 \\
0 & 1 & -3 & 0 \\
0 & -2 & 1 & 6
\end{array}\right] \underset{\substack{ \\
R_{3}+2 R_{2}}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 4 & 12 \\
0 & 1 & -3 & 0 \\
0 & 0 & -5 & 6
\end{array}\right]\right. \\
& \underset{-\frac{1}{5} R_{3}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 4 & 12 \\
0 & 1 & -3 & 0 \\
0 & 0 & 1 & -\frac{6}{5}
\end{array}\right] \xrightarrow{\substack{R_{1}-4 R_{3} \\
R_{2}+3 R_{3}}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & \frac{84}{5} \\
0 & 1 & 0 & -\frac{18}{5} \\
0 & 0 & 1 & -\frac{6}{5}
\end{array}\right]
\end{aligned}
$$

We can now read off the solution from the final augmented matrix: $x=\frac{84}{5}, y=-\frac{18}{5}$, and $z=-\frac{6}{5}$.
Quiz \#4. Friday, 12 Octoberber, 2007. [10 minutes]

1. Determine whether $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ is in $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. Show your reasoning. [5]

Solution I. By hit and miss fiddling, or however, observe that:

$$
\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]=4\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+2\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

It follows that $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ is in the span of $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and hence is also in the span of all three of $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

Solution II. More systematically, note that, by definition, $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ is in the span of $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$,

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text {, and }\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { if there are scalars } a, b \text {, and } c \text { such that: }} \\
& \qquad a\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+b\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
\end{aligned}
$$

This boils down to checking if there is a solution to the following system of linear equations:

$$
\begin{aligned}
b+c & =2 \\
a+c & =4 \\
a+b & =6
\end{aligned}
$$

We'll set up the given system of equations in augmented matrix form and solve it using Gaussian elimination and back-substitution. Here goes:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll|l}
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 4 \\
1 & 1 & 0 & 6
\end{array}\right]} & \stackrel{R_{1}}{ }
\end{array} \underset{R_{2}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 0 & 1 & 4 \\
0 & 1 & 1 & 2 \\
1 & 1 & 0 & 6
\end{array}\right] \underset{R_{3}-R_{1}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & 0 & 1 & 4 \\
0 & 1 & 1 & 2 \\
0 & 1 & -1 & 2
\end{array}\right]\right]
$$

The last augmented matrix corresponds to the system of linear equations

$$
\begin{aligned}
& a \quad+c=4 \\
& b+c=2 \\
& c=0
\end{aligned}
$$

which we solve by back substitution. Plugging $c=0$ into $b+c=2$ gives $b=2$, and then plugging $c=0$ and $b=2$ into $a+c=4$ gives $a=4$.

Since the system of linear equations does have a solution, $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ is indeed in the span of $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

Quiz \#5. Friday, 19 Octoberber, 2007. [10 minutes]

1. Compute $(\mathbf{A B})^{T}$ if $\mathbf{A}=\left[\begin{array}{cc}6 & -3 \\ -1 & 0 \\ 2 & 5\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}1 & 2 & -4 \\ 0 & -1 & 1\end{array}\right]$. [5]

Solution. We first compute $\mathbf{A B}$. Note that since \mathbf{A} is a 3×2 matrix and \mathbf{B} is a 2×3 matrix, $\mathbf{A B}$ must be a 3×3 matrix.

$$
\begin{aligned}
\mathbf{A B} & =\left[\begin{array}{cc}
6 & -3 \\
-1 & 0 \\
2 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -4 \\
0 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 \cdot 1+(-3) \cdot 0 & 6 \cdot 2+(-3) \cdot(-1) & 6 \cdot(-4)+(-3) \cdot 1 \\
(-1) \cdot 1+0 \cdot 0 & (-1) \cdot 2+0 \cdot(-1) & (-1) \cdot(-4)+0 \cdot 1 \\
2 \cdot 1+5 \cdot 0 & 2 \cdot 2+5 \cdot(-1) & 2 \cdot(-4)+5 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 & 15 & -27 \\
-1 & -2 & 4 \\
2 & -1 & -3
\end{array}\right]
\end{aligned}
$$

We next compute $(\mathbf{A B})^{T}$. Note that since $\mathbf{A B}$ is a 3×3 matrix, $(\mathbf{A B})^{T}$ must also be a 3×3 matrix.

$$
(\mathbf{A B})^{T}=\left[\begin{array}{ccc}
6 & 15 & -27 \\
-1 & -2 & 4 \\
2 & -1 & -3
\end{array}\right]^{T}=\left[\begin{array}{ccc}
6 & -1 & 2 \\
15 & -2 & -1 \\
-27 & 4 & -3
\end{array}\right]
$$

Quiz \#6. Friday, 9 November, 2007. [10 minutes]

1. Find the inverse matrix, if it exists, of $\mathbf{A}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$. [5]

Solution. We set up the appropriate super-augmented matrix and use the Gauss-Jordan method:

$$
\begin{aligned}
& {\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \underset{R_{3}-R_{1}}{\Longrightarrow}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \underset{R_{3} \leftrightarrow}{\Longrightarrow}\left[\begin{array}{llll|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \underset{R_{4}-R_{3}}{\Longrightarrow}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thus the inverse exists and $\mathbf{A}^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$

Quiz \#7. Friday, 16 November, 2007. [10 minutes]

1. Suppose \mathbf{A} and \mathbf{B} are invertible $k \times k$ matrices. Solve the matrix equation

$$
\left(\mathbf{X}^{-1} \mathbf{A}\right)^{-1}=\mathbf{A}\left(\mathbf{B}^{2} \mathbf{A}\right)^{-1}
$$

for the (invertible) $k \times k$ matrix \mathbf{X}. Simplify your answer as much as possible. [5]
Solution. We work to isolate \mathbf{X}. The first thing to do is to solve for $\mathbf{X}^{-1} \mathbf{A}$:

$$
\begin{aligned}
\mathbf{X}^{-1} \mathbf{A} & =\left(\left(\mathbf{X}^{-1} \mathbf{A}\right)^{-1}\right)^{-1}=\left(\mathbf{A}\left(\mathbf{B}^{2} \mathbf{A}\right)^{-1}\right)^{-1} \\
& =\left(\left(\mathbf{B}^{2} \mathbf{A}\right)^{-1}\right)^{-1} \mathbf{A}^{-1}=\mathbf{B}^{2} \mathbf{A} \mathbf{A}^{-1}=\mathbf{B}^{2}
\end{aligned}
$$

It follows that

$$
\mathbf{X}^{-1}=\mathbf{X}^{-1} \mathbf{A} \mathbf{A}^{-1}=\mathbf{B}^{2} \mathbf{A}^{-1}
$$

so

$$
\mathbf{X}=\left(\mathbf{X}^{-1}\right)^{-1}=\left(\mathbf{B}^{2} \mathbf{A}^{-1}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{-1}\left(\mathbf{B}^{2}\right)^{-1}=\mathbf{A} \mathbf{B}^{-2}
$$

The relation $\mathbf{X}=\mathbf{A B}^{-2}$ is as simple as it's going to get without further information about \mathbf{A} and \mathbf{B}.

Quiz \#8. Friday, 23 November, 2007. [10 minutes]

1. Let $\mathbf{A}=\left[\begin{array}{ccc}5 & 1 & -1 \\ 7 & 2 & -1 \\ 0 & 3 & 2\end{array}\right]$. Find bases for $\operatorname{row}(\mathbf{A}), \operatorname{col}(\mathbf{A})$, and $\operatorname{null}(\mathbf{A})$. [5]

Solution. Following the all-in-one approach done in class, we'll do Gauss-Jordan elimination on the augmented matrix representing the homogeneous system $\mathbf{A x}=\mathbf{0}$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
5 & 1 & -1 & 0 \\
7 & 2 & -1 & 0 \\
0 & 3 & 2 & 0
\end{array}\right] \stackrel{\frac{1}{5} R_{1}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & \frac{1}{5} & -\frac{1}{5} & 0 \\
7 & 2 & -1 & 0 \\
0 & 3 & 2 & 0
\end{array}\right] \underset{R_{2}-7 R_{1}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & \frac{1}{5} & -\frac{1}{5} & 0 \\
0 & \frac{3}{5} & \frac{2}{5} & 0 \\
0 & 3 & 2 & 0
\end{array}\right] } \\
& \underset{\frac{5}{3} R_{2}}{\Longrightarrow}\left[\begin{array}{ccc|c}
1 & \frac{1}{5} & -\frac{1}{5} & 0 \\
0 & 1 & \frac{2}{3} & 0 \\
0 & 3 & 2 & 0
\end{array}\right] \stackrel{R_{1}-\frac{1}{5} R 2}{\Longrightarrow} \begin{array}{cccc}
1 & 0 & -\frac{1}{3} & 0 \\
R_{3}-3 R_{2}
\end{array}\left[\begin{array}{cccc}
3 & 1 & \frac{2}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The rows of the (coefficient part of the) reduced matrix give a basis for the row space of the original matrix, so $\left\{\left[\begin{array}{c}1 \\ 0 \\ -\frac{1}{3}\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ \frac{2}{3}\end{array}\right]\right\}$ is a basis for $\operatorname{row}(\mathbf{A})$.

The columns of the reduced matrix which contain leading 1s of rows indicate columns of the original matrix which make up a basis for the column space of the original matrix, so $\left\{\left[\begin{array}{l}5 \\ 7 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{col}(\mathbf{A})$.

Finally, the reduced augmented matrix corresponds to the system of equations:

$$
\begin{aligned}
x & -\frac{1}{3} z
\end{aligned}=0
$$

Using t as a parameter and setting $z=t$, it follows that $x=\frac{1}{3} t$ and $y=-\frac{2}{3} t$. Thus the solutions to the homogeneous system $\mathbf{A x}=\mathbf{0}$ can be written in vector-parameteric form as:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

Hence $\left\{\left[\begin{array}{c}\frac{1}{3} \\ -\frac{2}{3} \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{null}(\mathbf{A})$.
Quiz \#9. Friday, 30 November, 2007. [10 minutes]

1. Find the eigenvalues of $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$. [5]

Solution. We need to find the values of λ for which there is a vector $\left[\begin{array}{l}x \\ y\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ such that $\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\lambda\left[\begin{array}{l}x \\ y\end{array}\right]$. This boils down to finding the values of λ such that the system of equations

$$
\begin{aligned}
x & =\lambda x \\
x+2 y & =\lambda y
\end{aligned} \text {, i.e. } \quad(1-\lambda) x, \quad \begin{aligned}
& x \\
& x
\end{aligned} \quad+(2-\lambda) y=0,
$$

has a non-zero solution. We do this by reducing the augmented matrix of the homogeneous system as far as we can:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1-\lambda & 0 & 0 \\
1 & 2-\lambda & 0
\end{array}\right]} \\
& \stackrel{R_{1}}{\Longrightarrow}\left[\begin{array}{cc|c}
\Longleftrightarrow \\
R_{2}
\end{array}\left[\begin{array}{cc}
1 & 2-\lambda \\
1-\lambda & 0
\end{array}\right) 0\right. \\
& R_{2}-(1-\lambda) R_{2}\left[\begin{array}{cc|l}
1 & 2-\lambda & 0 \\
0 & -(1-\lambda)(2-\lambda) & 0
\end{array}\right]
\end{aligned}
$$

At this point it is apparent that if $(1-\lambda)(2-\lambda) \neq 0$, the system has only the solution $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, which means that no such λ is an eigenvalue of the given matrix.

On the other hand, if $(1-\lambda)(2-\lambda)=0$, the system has infinitely many solutions all but one of which must satisfy $\left[\begin{array}{l}x \\ y\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]-$ so any such λ is an eigenvalue of the given matrix. Since $(1-\lambda)(2-\lambda)=0$ only for $\lambda=1$ and $\lambda=2$, these are the eigenvalues of the given matrix.

Quiz \#10. Thursday, 6 December, 2007. [10 minutes]

1. Find the determinant of $\mathbf{A}=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. [5]

Solution. We will row-reduce \mathbf{A} to upper-triangular form to compute $|\mathbf{A}|$.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \underset{R_{3}-R_{1}}{R_{4}-R_{1}}\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]} \\
& \underset{\begin{array}{c}
\\
R_{3}-R_{2} \\
R_{4}-R_{2}
\end{array}}{\Longrightarrow}\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -2 & -1 \\
0 & 0 & -1 & -2
\end{array}\right] \underset{-\frac{1}{2} R_{3}}{\Longrightarrow}\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & -1 & -2
\end{array}\right]
\end{aligned}
$$

The only row operation we used that would affect the determinant was the multiplication of row 3 by $-\frac{1}{2}$. Hence

$$
\left(-\frac{1}{2}\right)|\mathbf{A}|=\left|\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & -\frac{3}{2}
\end{array}\right]\right|=1 \cdot 1 \cdot 1 \cdot\left(-\frac{3}{2}\right)=-\frac{3}{2}
$$

and solving for $|\mathbf{A}|$ gives $|\mathbf{A}|=\left(-\frac{3}{2}\right) \div\left(-\frac{1}{2}\right)=3$.

