
Mathematics 135H – Linear algebra I: matrix algebra

Trent University, Fall 2007

Solutions to Quizzes

Quiz #1. Friday, 21 September, 2007. [5 minutes]

1. Find the acute angle between the vectors a = [2, 1, 0] and b =
[

2, 1,
√

5
]

. [5]

Solution. Suppose θ is the acute angle between a and b. Then

cos(θ) =
a · b

‖a‖‖b‖ =
[2, 1, 0] ·

[

2, 1,
√

5
]

‖[2, 1, 0]‖
∥

∥

[

2, 1,
√

5
]
∥

∥

=
2 · 2 + 1 · 1 + 0 ·

√
5

√
22 + 12 + 02

√

22 + 12 +
(√

5
)2

=
5√

5
√

10
=

5√
5
√

5
√

2
=

1√
2

,

so θ = 45◦ or θ = π

4
radians. �

Quiz #2. Friday, 28 September, 2007. [10 minutes]

1. Find a linear equation ax+ by + cz = d of the plane containing both of the lines given
by the parametric equations





x

y

z



 =





0
6
7



 + t





1
0
2



 and





x

y

z



 =





0
6
7



 + s





−1
2
1



 .

(Note that both of these lines pass through the point (0, 6, 7).) [5]

Solution. To obtain the normal vector [a, b, c] of the plane we need a vector which is
perpendicular to the direction vectors of both lines. The cross product of the direction
vectors will do:





1
0
2



 ×





−1
2
1



 =

∣

∣

∣

∣

∣

∣

i j k

1 0 2
−1 2 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

0 2
2 1

∣

∣

∣

∣

i +

∣

∣

∣

∣

1 2
−1 1

∣

∣

∣

∣

j +

∣

∣

∣

∣

1 0
−1 2

∣

∣

∣

∣

k

= (0 − 4)i − (1 − (−2)) j + (2 − 0)k = −4i − 3j + 2k =





−4
−3
2





An equation for the plane is therefore −4x − 3y + 2z = d. To determine d note that the
plane containing both lines must also pass through the point (0, 6, 7), so

d = −4 · 0 − 3 · 6 + 2 · 7 = 0 − 18 + 14 = −4 .
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Hence a linear equation of the plane containing both of the given lines is

−4x − 3y + 2z = −4 . �

Quiz #3. Friday, 5 Octoberber, 2007. [10 minutes]

1. Solve the following system of linear equations. [5]

x + y + z = 12

x − y + 2z = 18

2x + 3y − z = 24

Solution. We’ll set up the given system of equations in augmented matrix form and solve
it using Gauss-Jordan elimination. To save some space, we’ll do two row operations at a
time when we can safely do so.





1 1 1
1 −1 2
2 3 −1

∣

∣

∣

∣

∣

∣

12
18
24





=⇒
R2 − R1

R3 − 2R1





1 1 1
0 −2 1
0 1 −3

∣

∣

∣

∣

∣

∣

12
6
0





=⇒
R2 ↔ R3





1 1 1
0 1 −3
0 −2 1

∣

∣

∣

∣

∣

∣

12
0
6





R1 − R2

=⇒
R3 + 2R2





1 0 4
0 1 −3
0 0 −5

∣

∣

∣

∣

∣

∣

12
0
6





=⇒
− 1

5
R3





1 0 4
0 1 −3
0 0 1

∣

∣

∣

∣

∣

∣

12
0
− 6

5





R1 − 4R3

R2 + 3R3

=⇒





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

84

5

− 18

5

− 6

5





We can now read off the solution from the final augmented matrix: x = 84

5
, y = − 18

5
, and

z = − 6

5
. �

Quiz #4. Friday, 12 Octoberber, 2007. [10 minutes]

1. Determine whether





2
4
6



 is in Span











0
1
1



 ,





1
0
1



 ,





1
1
0











. Show your reasoning. [5]

Solution I. By hit and miss fiddling, or however, observe that:





2
4
6



 = 4





0
1
1



 + 2





1
0
1





It follows that





2
4
6



 is in the span of





0
1
1



 and





1
0
1



, and hence is also in the span of all

three of





0
1
1



,





1
0
1



, and





1
1
0



. �
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Solution II. More systematically, note that, by definition,





2
4
6



 is in the span of





0
1
1



,





1
0
1



, and





1
1
0



 if there are scalars a, b, and c such that:

a





0
1
1



 + b





1
0
1



 + c





1
1
0



 =





2
4
6





This boils down to checking if there is a solution to the following system of linear equations:

b + c = 2
a + c = 4
a + b = 6

We’ll set up the given system of equations in augmented matrix form and solve it using
Gaussian elimination and back-substitution. Here goes:





0 1 1
1 0 1
1 1 0

∣

∣

∣

∣

∣

∣

2
4
6





R1 ↔ R2

=⇒





1 0 1
0 1 1
1 1 0

∣

∣

∣

∣

∣

∣

4
2
6



 =⇒
R3 −R1





1 0 1
0 1 1
0 1 −1

∣

∣

∣

∣

∣

∣

4
2
2





=⇒
R3 − R2





1 0 1
0 1 1
0 0 −2

∣

∣

∣

∣

∣

∣

4
2
0



 =⇒
− 1

2
R3





1 0 1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

4
2
0





The last augmented matrix corresponds to the system of linear equations

a + c = 4
b + c = 2

c = 0

which we solve by back substitution. Plugging c = 0 into b + c = 2 gives b = 2, and then
plugging c = 0 and b = 2 into a + c = 4 gives a = 4.

Since the system of linear equations does have a solution,





2
4
6



 is indeed in the span

of





0
1
1



,





1
0
1



, and





1
1
0



. �
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Quiz #5. Friday, 19 Octoberber, 2007. [10 minutes]

1. Compute (AB)T if A =





6 −3
−1 0
2 5



 and B =

[

1 2 −4
0 −1 1

]

. [5]

Solution. We first compute AB. Note that since A is a 3 × 2 matrix and B is a 2 × 3
matrix, AB must be a 3 × 3 matrix.

AB =





6 −3
−1 0
2 5





[

1 2 −4
0 −1 1

]

=





6 · 1 + (−3) · 0 6 · 2 + (−3) · (−1) 6 · (−4) + (−3) · 1
(−1) · 1 + 0 · 0 (−1) · 2 + 0 · (−1) (−1) · (−4) + 0 · 1

2 · 1 + 5 · 0 2 · 2 + 5 · (−1) 2 · (−4) + 5 · 1





=





6 15 −27
−1 −2 4
2 −1 −3





We next compute (AB)T . Note that since AB is a 3 × 3 matrix, (AB)T must also be a
3 × 3 matrix.

(AB)T =





6 15 −27
−1 −2 4
2 −1 −3





T

=





6 −1 2
15 −2 −1
−27 4 −3



 �

Quiz #6. Friday, 9 November, 2007. [10 minutes]

1. Find the inverse matrix, if it exists, of A =







1 0 0 0
0 0 1 0
1 1 0 0
0 0 1 1







. [5]

Solution. We set up the appropriate super-augmented matrix and use the Gauss-Jordan
method:







1 0 0 0
0 0 1 0
1 1 0 0
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







=⇒
R3 − R1







1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1







=⇒
R3 ↔ R1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
−1 0 1 0
0 1 0 0
0 0 0 1







=⇒
R4 −R3







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 0 1







Thus the inverse exists and A−1 =







1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 0 1






. �
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Quiz #7. Friday, 16 November, 2007. [10 minutes]

1. Suppose A and B are invertible k × k matrices. Solve the matrix equation

(

X−1A
)

−1

= A
(

B2A
)

−1

for the (invertible) k × k matrix X. Simplify your answer as much as possible. [5]

Solution. We work to isolate X. The first thing to do is to solve for X−1A:

X−1A =
(

(

X−1A
)

−1
)

−1

=
(

A
(

B2A
)

−1
)

−1

=
(

(

B2A
)

−1
)

−1

A−1 = B2AA−1 = B2

It follows that
X−1 = X−1AA−1 = B2A−1 ,

so
X =

(

X−1
)

−1

=
(

B2A−1
)

−1

=
(

A−1
)

−1 (

B2
)

−1

= AB−2 .

The relation X = AB−2 is as simple as it’s going to get without further information about
A and B. �

Quiz #8. Friday, 23 November, 2007. [10 minutes]

1. Let A =





5 1 −1
7 2 −1
0 3 2



. Find bases for row(A), col(A), and null(A). [5]

Solution. Following the all-in-one approach done in class, we’ll do Gauss-Jordan elimina-
tion on the augmented matrix representing the homogeneous system Ax = 0.





5 1 −1
7 2 −1
0 3 2

∣

∣

∣

∣

∣

∣

0
0
0





1

5
R1

=⇒





1 1

5
− 1

5

7 2 −1
0 3 2

∣

∣

∣

∣

∣

∣

0
0
0





=⇒
R2 − 7R1





1 1

5
− 1

5

0 3

5

2

5

0 3 2

∣

∣

∣

∣

∣

∣

0
0
0





=⇒
5

3
R2





1 1

5
− 1

5

0 1 2

3

0 3 2

∣

∣

∣

∣

∣

∣

0
0
0





R1 − 1

5
R2

=⇒
R3 − 3R2





1 0 − 1

3

0 1 2

3

0 0 0

∣

∣

∣

∣

∣

∣

0
0
0





The rows of the (coefficient part of the) reduced matrix give a basis for the row space

of the original matrix, so











1
0
− 1

3



 ,





0
1
2

3











is a basis for row(A).

The columns of the reduced matrix which contain leading 1s of rows indicate columns
of the original matrix which make up a basis for the column space of the original matrix,

so











5
7
0



 ,





1
2
3











is a basis for col(A).
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Finally, the reduced augmented matrix corresponds to the system of equations:

x − 1

3
z = 0

y + 2

3
z = 0

Using t as a parameter and setting z = t, it follows that x = 1

3
t and y = − 2

3
t. Thus

the solutions to the homogeneous system Ax = 0 can be written in vector-parameteric
form as:





x

y

z



 = t





1

3

− 2

3

1





Hence











1

3

− 2

3

1











is a basis for null(A). �

Quiz #9. Friday, 30 November, 2007. [10 minutes]

1. Find the eigenvalues of A =

[

1 0
1 2

]

. [5]

Solution. We need to find the values of λ for which there is a vector

[

x

y

]

6=
[

0
0

]

such that
[

1 0
1 2

][

x

y

]

= λ

[

x

y

]

. This boils down to finding the values of λ such that the system of

equations

x = λx

x + 2y = λy
, i.e.

(1 − λ)x = 0
x + (2 − λ)y = 0

,

has a non-zero solution. We do this by reducing the augmented matrix of the homogeneous
system as far as we can:

[

1 − λ 0
1 2 − λ

∣

∣

∣

∣

0
0

]

R1 ↔ R2

=⇒

[

1 2 − λ

1 − λ 0

∣

∣

∣

∣

0
0

]

R2 − (1 − λ)R2

=⇒

[

1 2 − λ

0 −(1 − λ)(2 − λ)

∣

∣

∣

∣

0
0

]

At this point it is apparent that if (1−λ)(2−λ) 6= 0, the system has only the solution
[

x

y

]

=

[

0
0

]

, which means that no such λ is an eigenvalue of the given matrix.

On the other hand, if (1 − λ)(2 − λ) = 0, the system has infinitely many solutions –

all but one of which must satisfy

[

x

y

]

6=
[

0
0

]

– so any such λ is an eigenvalue of the given

matrix. Since (1− λ)(2−λ) = 0 only for λ = 1 and λ = 2, these are the eigenvalues of the
given matrix. �
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Quiz #10. Thursday, 6 December, 2007. [10 minutes]

1. Find the determinant of A =







1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0







. [5]

Solution. We will row-reduce A to upper-triangular form to compute |A|.






1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0







=⇒
R3 − R1

R4 − R1







1 0 1 1
0 1 1 1
0 1 −1 0
0 1 0 −1







=⇒
R3 − R2

R4 − R2







1 0 1 1
0 1 1 1
0 0 −2 −1
0 0 −1 −2






=⇒

− 1

2
R3







1 0 1 1
0 1 1 1
0 0 1 1

2

0 0 −1 −2







=⇒

R4 + R3







1 0 1 1
0 1 1 1
0 0 1 1

2

0 0 0 − 3

2







The only row operation we used that would affect the determinant was the multiplication
of row 3 by − 1

2
. Hence

(

−1

2

)

|A| =

∣

∣

∣

∣

∣

∣

∣







1 0 1 1
0 1 1 1
0 0 1 1

2

0 0 0 − 3

2







∣

∣

∣

∣

∣

∣

∣

= 1 · 1 · 1 ·
(

−3

2

)

= −3

2
,

and solving for |A| gives |A| =
(

− 3

2

)

÷
(

− 1

2

)

= 3. �
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