Mathematics 135H - Linear algebra I: matrix algebra

Trent University, Fall 2007

Quizzes

Quiz \#1. Friday, 21 September, 2007. [5 minutes]

1. Find the acute angle between the vectors $\mathbf{a}=[2,1,0]$ and $\mathbf{b}=[2,1, \sqrt{5}]$. [5]

Quiz \#2. Friday, 28 September, 2007. [10 minutes]

1. Find a linear equation $a x+b y+c z=d$ of the plane containing both of the lines given by the parametric equations

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
6 \\
7
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
6 \\
7
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] .
$$

(Note that both of these lines pass through the point $(0,6,7)$.) [5]
Quiz \#3. Friday, 5 October, 2007. [10 minutes]

1. Solve the following system of linear equations. [5]

$$
\begin{aligned}
x+y+z & =12 \\
x-y+2 z & =18 \\
2 x+3 y-z & =24
\end{aligned}
$$

Quiz \#4. Friday, 12 October, 2007. [10 minutes]

1. Determine whether $\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ is in $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. Show your reasoning. [5]

Quiz \#5. Friday, 19 October, 2007. [10 minutes]

1. Compute $(\mathbf{A B})^{T}$ if $\mathbf{A}=\left[\begin{array}{cc}6 & -3 \\ -1 & 0 \\ 2 & 5\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}1 & 2 & -4 \\ 0 & -1 & 1\end{array}\right]$. [5]

Quiz \#5. Alternate version. [10 minutes]

1. Give examples of 3×3 matrices \mathbf{A} and \mathbf{B} such that $\mathbf{A}^{T} \mathbf{B}^{T} \neq \mathbf{B}^{T} \mathbf{A}^{T}$. [5]

Quiz \#6. Friday, 9 November, 2007. [10 minutes]

1. Find the inverse matrix, if it exists, of $\mathbf{A}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$. [5]

Quiz \#6. Alternate version. [10 minutes]

1. Find the inverse matrix, if it exists, of $\mathbf{A}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$. [5]

Quiz \#7. Friday, 16 November, 2007. [10 minutes]

1. Suppose \mathbf{A} and \mathbf{B} are invertible $k \times k$ matrices. Solve the matrix equation

$$
\left(\mathbf{X}^{-1} \mathbf{A}\right)^{-1}=\mathbf{A}\left(\mathbf{B}^{2} \mathbf{A}\right)^{-1}
$$

for the (invertible) $k \times k$ matrix \mathbf{X}. Simplify your answer as much as possible. [5]
Quiz \#7. Alternate version. [10 minutes]

1. Suppose \mathbf{A}, \mathbf{B}, and \mathbf{C} are invertible $k \times k$ matrices. Solve the matrix equation

$$
(\mathbf{A X C})^{-1}=\mathbf{A}\left(\mathbf{B}^{-1} \mathbf{C}\right)^{-2}
$$

for the (invertible) $k \times k$ matrix \mathbf{X}. Simplify your answer as much as possible. [5]
Quiz \#8. Friday, 23 November, 2007. [15 minutes]

1. Let $\mathbf{A}=\left[\begin{array}{ccc}5 & 1 & -1 \\ 7 & 2 & -1 \\ 0 & 3 & 2\end{array}\right]$. Find bases for $\operatorname{row}(\mathbf{A}), \operatorname{col}(\mathbf{A})$, and $\operatorname{null}(\mathbf{A}) .[5]$

Quiz \#8. Alternate version. [15 minutes]

1. Let $\mathbf{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & -3 & 0 \\ 1 & 2 & 3\end{array}\right]$. Find bases for $\operatorname{row}(\mathbf{A}), \operatorname{col}(\mathbf{A})$, and $\operatorname{null}(\mathbf{A}) . \quad$ [5]

Quiz \#9. Friday, 30 November, 2007. [10 minutes]

1. Find the eigenvalues of $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$. [5]

Quiz \#9. Alternate version. [10 minutes]

1. Find the eigenvalues of $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right]$. [5]

Quiz \#10. Thursday, 6 December, 2007. [10 minutes]

1. Find the determinant of $\mathbf{A}=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. [5]
