Mathematics 135H - Linear algebra I: matrix algebra

Trent University, Fall 2007
Final Examination
Monday, 10 December, 2007
Time: 3 hours
Brought to you by Stefan Bilaniuk.
Instructions: Show all your work. If in doubt about something, ask!
Aids: Calculator; annotated Formula for Success or $8.5^{\prime \prime} \times 11^{\prime \prime}$ aid sheet; one brain.
Part I. Do all of 1-5.

1. Consider the planes in \mathbb{R}^{3} given by the equations $2 x+3 y+3 z=12$ and $6 x+4 y+3 z=$ 24, respectively.
a. Sketch the parts of these planes, and their line of intersection, that lie in the first octant. [5]
b. Find a parametric description of the line of intersection of the two planes. [5]
2. Consider the following system of linear equations.

$$
\left.\begin{array}{rl}
w-x-y+z & =0 \\
w+y & =-1 \\
w+x+2 y+z & =1 \\
w+x & +z
\end{array}\right) 2
$$

a. Use Gaussian elimination to find all the solutions, if any, of this system. [10]
b. Use your work for a to compute the determinant of the coefficient matrix. [5]
3. Find the inverse, if it exists, of $\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & -2 & -1 \\ 2 & 0 & -1\end{array}\right]$. [10]
4. Let $\mathbf{A}=\left[\begin{array}{ccccc}1 & -1 & 0 & -1 & 1 \\ 1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 & -1\end{array}\right]$.
a. Use Gauss-Jordan elimination to put \mathbf{A} in reduced echelon form. [5]
b. Find bases for $\operatorname{row}(\mathbf{A})$ and $\operatorname{col}(\mathbf{A})$, the row and column spaces of \mathbf{A}. [4]
c. What are the rank and nullity of A? [1]
d. Find a basis for null(A), the null space of A. [5]
5. Find all the eigenvalues of $\mathbf{B}=\left[\begin{array}{cc}0 & 4 \\ -1 & 5\end{array}\right]$, and find an eigenvector for each of the eigenvalues. [15]

Part II. Do any three of 6-11.
6. Compute the determinant of

$$
\mathbf{C}=\left[\begin{array}{cccc}
2 & 0 & 1 & 2 \\
0 & -1 & 0 & 0 \\
1 & 1 & 2 & 3 \\
-3 & 4 & 2 & -1
\end{array}\right]
$$

and use it to determine whether \mathbf{C} is invertible or not. [10]
7. Suppose \mathbf{A} is a square matrix. What is $\operatorname{det}\left(\mathbf{A}^{T}\right)=\left|\mathbf{A}^{T}\right|$ in terms of $\operatorname{det}(\mathbf{A})=|\mathbf{A}|$? Explain why! [10]
8. Find all 2×2 matrices \mathbf{X} satisfying the matrix equation $\mathbf{X}^{2}+\mathbf{X}-2 \mathbf{I}_{2}=\mathbf{O}_{2}$. [10]
9. Suppose T is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} such that

$$
T\left(\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
4 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
4 \\
4
\end{array}\right] .
$$

What is the matrix \mathbf{A}_{T} associated to this linear transformation? (This matrix is called the standard matrix of T and denoted by $[T]$ in the text.) [10]
10. Find a basis for the subspace $S=\operatorname{Span}\left\{\left[\begin{array}{c}3 \\ -1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 1\end{array}\right]\right\} .[10]$
11. Find the distance from the point $(2,0,1)$ in \mathbb{R}^{3} to the plane given by the equation $x-y-z=-1$. [10]

$$
[\text { Total }=95]
$$

Part Null. Bonus!
$0^{0^{0}}$. Write an original little poem about linear algebra or mathematics in general. [2]

Have a nice break!
I hope to see you next term!

