
Mathematics 135H – Linear algebra I: matrix algebra

Trent University, Fall 2007

Solutions to the Final Examination

1. Consider the planes in R
3 given by the equations 2x+3y+3z = 12 and 6x+4y+3z =

24, respectively.

a. Sketch the parts of these planes, and their line of intersection, that lie in the first
octant. [5]

Solution. First, we find the intercepts of each of the planes:

2x + 3y + 3z = 12 6x + 4y + 3z = 24

y = z = 0 x = 12/2 = 6 x = 24/6 = 4
x = z = 0 y = 12/3 = 4 y = 24/4 = 6
x = y = 0 z = 12/3 = 4 z = 24/3 = 8

To sketch the parts of the planes that lie in the first octant, plot the intercepts and connect
up those belonging to each plane. To sketch the part of the line of intersection that lies
in the first octant, note the points in the xy- and xz-planes where the edges of the two
triangles you just drew meet and connect those up too.

Note that we don’t really have to work out the coordinates of the two points we
connected up to draw the line of intersection in order to add it to the sketch. �
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b. Find a parametric description of the line of intersection of the two planes. [5]

Solution. A parametric description of the line requires a base point on the line and a
direction vector.

First, we find the coordinates of one of the two points we connected in a to draw the
line of intersection. The one in the xz-plane, i.e. y = 0, turns out to be slightly nicer.
When y = 0, the equations of the planes boil down to 2x + 3z = 12 and 6x + 3z = 24.
Simplifying the latter gives

6x + 3z = 24 =⇒ 2x + z = 8 =⇒ z = 8 − 2x ,

and plugging into the former gives

2x + 3z = 12 =⇒ 2x + 3(8 − 2x) = 12 =⇒ −4x = −12 =⇒ x = 3 .

Plugging x = 3 back into z = 8 − 2x yields z = 8 − 2 · 3 = 8 − 6 = 2. Thus the point
of intersection of the two given planes (which must thus be a point on the line) with the
plane y = 0 has coordinates (3, 0, 2).

Second, we find a direction vector for the line. We will do this by finding a vector
perpendicular to the normal vectors of both of the given planes, which must then be parallel
to both planes and hence in the direction of their line of intersection. The cross-product
of the normal vectors, each of which which we can read off the equation of its plane, will
be perpendicular to both:
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∣

∣
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∣

∣

∣
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Thus a parametric description of the line of intersection of the two given planes is





x
y
z



 =





3
0
2



 + t





−3
12
−10



 ,

where t is the parameter.
The other way to find a direction vector would be to find the coordinates of another

point on the line and take the vector from one point to the other as the direction vector.
For those interested in this, the point of intersection of the two given planes with z = 0
has coordinates

(

12

5
, 12

5
, 0

)

and could, of course, also serve just as well as a base point for
the parametric description of the line. �
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2. Consider the following system of linear equations.

w − x − y + z = 0
x + y = −1

w + x + 2y + z = 1
w + x + z = 2

a. Use Gaussian elimination to find all the solutions, if any, of this system. [10]

Solution. We’ll write this system in augmented matrix form and go for it:







1 −1 −1 1
0 1 1 0
1 1 2 1
1 1 0 1

∣

∣

∣

∣

∣

∣

∣

0
−1
1
2







=⇒
R3 − R1

R4 − R1







1 −1 −1 1
0 1 1 0
0 2 3 0
0 2 1 0

∣

∣

∣
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∣

∣

∣

0
−1
1
2







=⇒
R3 − 2R2

R4 − 2R2







1 −1 −1 1
0 1 1 0
0 0 1 0
0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

0
−1
3
4







=⇒

R4 + R3







1 −1 −1 1
0 1 1 0
0 0 1 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

0
−1
3
7







At this point we can stop: since the fourth row in the final matrix has 0 in every entry
except for a right-hand side of 7, the given system has no solutions. �

b. Use your work for a to compute the determinant of the coefficient matrix. [5]

Solution. It follows from part a that the coefficient matrix, which is a 4 × 4 matrix,
has rank less than 4, and hence is not invertible. Since it is not invertible, it must have
determinant 0. �

3. Find the inverse, if it exists, of





2 3 0
1 −2 −1
2 0 −1



. [10]

Solution. We set up the required “super-augmented” matrix and use Gauss-Jordan elim-
ination to compute the inverse, if it exists.





2 3 0
1 −2 −1
2 0 −1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





R1 ↔ R2

=⇒





1 −2 −1
2 3 0
2 0 −1

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
0 0 1





=⇒
R2 − 2R1

R3 − 2R1





1 −2 −1
0 7 2
0 4 1

∣

∣

∣

∣

∣

∣

0 1 0
1 −2 0
0 −2 1





=⇒
1

7
R2





1 −2 −1
0 1 2

7

0 4 1

∣

∣

∣

∣

∣

∣

0 1 0
1

7
− 2

7
0

0 −2 1





R1 + 2R2

=⇒
R3 − 4R2





1 0 − 3

7

0 1 2

7

0 0 − 1

7

∣

∣

∣

∣

∣

∣

2

7

3

7
0

1

7
− 2

7
0

− 4

7
− 6

7
1



 =⇒
−7R3





1 0 − 3

7

0 1 2

7

0 0 1

∣

∣

∣

∣

∣

∣

2

7

3

7
0

1

7
− 2

7
0

4 6 −7





R1 + 3

7
R3

R2 − 2

7
R3

=⇒





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

2 3 −3
−1 −2 2
4 6 −7
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Thus





2 3 0
1 −2 −1
2 0 −1





−1

=





2 3 −3
−1 −2 2
4 6 −7



. �

4. Let A =







1 −1 0 −1 1
1 0 −1 0 1
0 −1 1 −1 0
−1 0 1 0 −1






.

a. Use Gauss-Jordan elimination to put A in reduced echelon form. [5]

Solution.







1 −1 0 −1 1
1 0 −1 0 1
0 −1 1 −1 0
−1 0 1 0 −1







R2 − R1

=⇒
R4 + R1







1 −1 0 −1 1
0 1 −1 1 0
0 −1 1 −1 0
0 −1 1 −1 0







R1 + R2

=⇒
R3 + R2

R4 + R2







1 0 −1 0 1
0 1 −1 1 0
0 0 0 0 0
0 0 0 0 0







�

b. Find bases for row(A) and col(A), the row and column spaces of A. [4]

Solution. The non-zero rows of the reduced matrix in a are a basis for the row space,
row(A):





























1
0
−1
0
1











,











0
1
−1
1
0





























The columns of the original matrix corresponding to the columns in the reduced matrix
in which a leading 1 occurs in a row form a basis for the column space, col(A):

















1
1
0
−1






,







−1
0
−1
0






x











�

c. What are the rank and nullity of A? [1]

Solution. Since there are two non-zero rows in the reduced matrix in a, the rank of A is
2. The rank and nullity of A must add up to the number of columns of A, so the nullity
of A is 5 − 2 = 3. �
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d. Find a basis for null(A), the null space of A. [5]

Solution. By definition, null(A) = {x | Ax = 0 }. Given the reduction in a, the equation
Ax = 0 boils down to the system of equations:

v − x + z = 0
w − x + y = 0

i.e.
v = x − z
w = x − y

Since there are two equations and five variables in the reduced system, we will require
three paramaters, say r, s, and t, to write the solutions parametrically. Setting x = r,
y = s, and z = t, means that v = r − t and w = r − s. Writing this in vector-parametric
form gives:











v
w
x
y
z











=











r − t
r − s

r
s
t











= r











1
1
1
0
0











+ s











0
−1
0
1
0











+ t











−1
0
0
0
1











Thus a basis for the null space null(A) is:





























1
1
1
0
0











,











0
−1
0
1
0











,











−1
0
0
0
1





























�

5. Find all the eigenvalues of B =

[

0 4
−1 5

]

, and find an eigenvector for each of the

eigenvalues. [15]

Solution. First, we find the characteristic polynomial of B by computing |B − λI|:

|B − λI| =

∣

∣

∣

∣

[

0 4
−1 5

]

− λ

[

1 0
0 1

]∣

∣

∣

∣

=

∣

∣

∣

∣

−λ 4
−1 5 − λ

∣

∣

∣

∣

= (−λ)(5 − λ) − (−1)4 = λ2 − 5λ + 4

Second, we find the eigenvalues of B by finding the roots of the characteristic polyno-
mial. It would be feasible and entirely acceptable to factor this polynomial by eyeballing
it or by hit and miss, but those who prefer a systematic approach can use the quadratic
formula:

λ2 − 5λ + 4 = 0 =⇒ λ =
−(−5) ±

√

(−5)2 − 4 · 1 · 4
2 · 1 =

5 ±
√

25 − 16

2

=
5 ±

√
9

2
=

5 ± 3

2
=

2

2
or

8

2
= 1 or 4

This can be checked by noting that (λ − 1)(λ − 4) = λ2 − 5λ + 4.
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Third, we find an eigenvector for each of the eigenvalues λ = 1 and λ = 4 of B. In
each case, we need to find a x 6= 0 such that (B − λI)x = 0.

λ = 1: In this case, B − λI =

[

0 4
−1 5

]

− 1 ·
[

1 0
0 1

]

=

[

−1 4
−1 4

]

, so the equation

(B − λI)x = 0 boils down to −x + 4y = 0, i.e. x = 4y. Setting y = 1 6= 0 gives

x = 4, so

[

4
1

]

is an eigenvector for the eigenvalue λ = 1.

λ = 4: In this case, B − λI =

[

0 4
−1 5

]

− 4 ·
[

1 0
0 1

]

=

[

−4 4
−1 1

]

, so the equation

(B − λI)x = 0 boils down to −x + y = 0, i.e. x = y. Setting y = 1 6= 0 gives

x = 1, so

[

1
1

]

is an eigenvector for the eigenvalue λ = 4. �

Part II. Do any three of 6–11.

6. Compute the determinant of

C =







2 0 1 2
0 −1 0 0
1 1 2 3
−3 4 2 −1







and use it to determine whether C is invertible or not. [10]

Solution. We will compute the determinant by expanding along the second row, because
all but one of its entries are zeros. Note that because we are expanding along an even-
numbered row, we must start the alternating signs with a minus.

|C| =

∣

∣

∣

∣

∣

∣

∣

2 0 1 2
0 −1 0 0
1 1 2 3
−3 4 2 −1

∣

∣

∣

∣

∣

∣

∣

= −0 ·

∣

∣

∣

∣

∣

∣

0 1 2
1 2 3
4 2 −1

∣

∣

∣

∣

∣

∣

+ (−1) ·

∣

∣

∣

∣

∣

∣

2 1 2
1 2 3
−3 2 −1

∣

∣

∣

∣

∣

∣

− 0 ·

∣

∣

∣

∣

∣

∣

2 0 2
1 1 3
−3 4 −1

∣

∣

∣

∣

∣

∣

+ 0 ·

∣

∣

∣

∣

∣

∣

2 0 1
1 1 2
−3 4 2

∣

∣

∣

∣

∣

∣

Now we expand the only cofactor that matters along its first row.

= (−1) ·
[

+2 ·
∣

∣

∣

∣

2 3
2 −1

∣

∣

∣

∣

− 1 ·
∣

∣

∣

∣

1 3
−3 −1

∣

∣

∣

∣

+ 2 ·
∣

∣

∣

∣

1 2
−3 2

∣

∣

∣

∣

]

= (−1) · [2 · (−2 − 6) − 1 · (−1 + 9) + 2 · (2 + 6)]

= (−1) · [−16 − 8 + 16] = (−1) · [−8] = 8

Since |C| = 8 6= 0, C must be invertible. �
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7. Suppose A is a square matrix. What is det
(

AT
)

=
∣

∣AT
∣

∣ in terms of det(A) = |A|?
Explain why! [10]

Solution. It turns out that det
(

AT
)

=
∣

∣AT
∣

∣ = |A| = det(A). (This is Theorem 4.10
in the text.) The reason is that the rows (respectively, columns) of A are the columns
(respectively, rows) of AT . Thus, if one computes |A| (and any relevant minors of A) by
expanding along a row (respectively, column) one encounters the same entries in the same
order as one does by computing

∣

∣AT
∣

∣ (and any relevant minors of AT ) by expanding AT

along the corresponding columns (respectively, rows). �

8. Find all 2 × 2 matrices X satisfying the matrix equation X2 + X− 2I2 = O2. [10]

Solution. An obvious thing to try is to factor the given matrix equation. Note that the
polynomial x2 − x + 2 = (x + 2)(x − 1), and the corresponding factorization works for the
given matrix polynomial:

X2 + X− 2I2 = (X + 2I2) (X− I2)

It is very tempting to assume that because (x + 2)(x − 1) = 0 implies that x + 2 = 0 or
x − 1 = 0, and hence that x = −2 or x = 1, that the corresponding argument works for
the matrix equation:

(X + 2I2) (X − I2) = 02 =⇒ X + 2I2 = 02 or X− I2 = 02

=⇒ X = −2I2 or X = I2

Unfortunately, this argument breaks down at the first step because it is perfectly possible
to have matrices A 6= 02 and B 6= 02 with AB = 02. Mind you, the conclusion is partially
correct, in that X = −2I2 and X = I2 are both solutions of the given matrix equation, but

they are not the only possible solutions. For example, X =

[

1 0
0 −2

]

is also a solution of

X2 + X− 2I2 = O2.
The foregoing, or even most of it, would have been enough for full credit on this

question, but to answer it fully requires one to get down and dirty with the possible

entries of a 2×2 matrix X such that X2 +X−2I2 = O2. Suppose then that X =

[

a b
c d

]

is a solution to this matrix equation. Then

X2 + X − 2I2 =

[

a b
c d

]2

+

[

a b
c d

]

− 2

[

1 0
0 1

]

=

[

a2 + bc ab + bd
ac + cd bc + d2

]

+

[

a b
c d

]

+

[

−2 0
0 −2

]

=

[

a2 + bc + a − 2 ab + bd + b
ac + cd + c bc + d2 + d − 2

]

,

so we need to find all the solutions of
[

a2 + bc + a − 2 ab + bd + b
ac + cd + c bc + d2 + d − 2

]

=

[

0 0
0 0

]

,
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i.e. all the solutions to the (non-linear) system of equations

a2 + bc + a − 2 = 0 ab + bd + b = 0
ac + cd + c = 0 bc + d2 + d − 2 = 0 .

We first rewrite and rearrange these equations to make them a little easier to work
with:

(a + 2)(a − 1) = a2 + a − 2 = −bc
(d + 2)(d − 1) = d2 + d − 2 = −bc

b(a + d + 1) = 0
c(a + d + 1) = 0

Note that it follows from the last two equations that either b = 0 and c = 0, or a+d+1 = 0.
We will consider each of these possibilities separately.

I. b = 0 and c = 0: In this case −bc = 0, so (a+2)(a− 1) = 0 and (d+2)(d− 1) = 0, from
which it follows that a = −2 or a = 1 and that d = −2 or d = 1. This gives the following
four solutions to the given matrix equation:

[

1 0
0 1

] [

−2 0
0 1

] [

1 0
0 −2

] [

−2 0
0 −2

]

Note that the middle two of these solutions make a + d + 1 = 0 true as well.

II. a + d + 1 = 0: We need to consider three sub-cases. (The fourth possible subcase,
where b = 0 and c = 0, has already been dealt with above.)

i. b = 0 and c 6= 0: In this case −bc = 0, so, as obove, we get that a = −2 or a = 1
and that d = −2 or d = 1. Since we must also satisfy a + d + 1 = 0, this boils
down to either a = −2 and d = 1 or a = 1 and d = −2. However, we have no
further restrictions on c, so we get the following (infinite families of) solutions to
the given matrix equation:

[

−2 0
c 1

] [

1 0
c −2

]

ii. b 6= 0 and c = 0: In this case −bc = 0, so, as obove, we get that a = −2 or a = 1
and that d = −2 or d = 1. Since we must also satisfy a + d + 1 = 0, this boils
down to either a = −2 and d = 1 or a = 1 and d = −2. However, we have no
further restrictions on b, so we get the following (infinite families of) solutions to
the given matrix equation:

[

−2 b
0 1

] [

1 b
0 −2

]

iii. b 6= 0 and c 6= 0: In this case −bc 6= 0, so we have to work harder to solve for a
and d. To solve a2 + a − 2 + bc = 0 for a and d2 + d − 2 + bc = 0 for d, we use
the quadratic formula, which yields

a =
−1 ±

√

12 − 4(−2 + bc)

2 · 1 =
−1 ±

√
9 − 4bc

2
= −1

2
±

√

9

4
− bc and

d =
−1 ±

√

12 − 4(−2 + bc)

2 · 1 =
−1 ±

√
9 − 4bc

2
= −1

2
±

√

9

4
− bc .
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That is, we have two possibilities for each of a and d, − 1

2
+

√

9

4
− bc and − 1

2
−

√

9

4
− bc.

If one of a or d is − 1

2
+

√

9

4
− bc and the other is − 1

2
−

√

9

4
− bc, then

a + d + 1 = 0 and there is no further restriction on bc except that we need
9

4
− bc ≥ 0, i.e. bc ≤ 9

4
, for the square root to make sense. In this situation we

get the following infinite families of solutions to the matrix equation,





− 1

2
+

√

9

4
− bc b

c − 1

2
−

√

9

4
− bc



 and





− 1

2
−

√

9

4
− bc b

c − 1

2
+

√

9

4
− bc



 ,

where b and c need only satisfy 0 6= bc ≤ 9

4
.

If a = d = − 1

2
+

√

9

4
− bc, then a + d + 1 = 0 gives 2

√

9

4
− bc = 0, from

which it follows that bc = 9

4
. In this situation we get the following infinite family

of solutions to the matrix equation,





− 1

2
+

√

9

4
− bc b

9

4b
− 1

2
+

√

9

4
− bc



 ,

where b need only satisfy b 6= 0.

If a = d = − 1

2
−

√

9

4
− bc, then a + d + 1 = 0 gives −2

√

9

4
− bc = 0, from

which it follows that bc = 9

4
. In this situation we get the following infinite family

of solutions to the matrix equation,





− 1

2
−

√

9

4
− bc b

9

4b
− 1

2
−

√

9

4
− bc



 ,

where b need only satisfy b 6= 0.

The truly mathochistic can amuse themselves here by considering the degree to which
these various sets of solutions overlap each other, by way of simplifying their total descrip-
tion . . . �
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9. Suppose T is a linear transformation from R
3 to R

3 such that

T









−1
1
1







 =





4
4
0



 , T









1
−1
1







 =





4
0
4



 , and T









1
1
−1







 =





0
4
4



 .

What is the matrix AT associated to this linear transformation? (This matrix is called
the standard matrix of T and denoted by [T ] in the text.) [10]

Solution. The columns of AT = [T ] are T









1
0
0







, T









0
1
0







, and T









0
0
1







, so

our first step will be to write





1
0
0



,





0
1
0



, and





0
0
1



 in terms of





−1
1
1



,





1
−1
1



, and





1
1
−1



. Fortunately, this is pretty easy to do by inspection. Since





−1
1
1



+





1
−1
1



 =





0
0
2



,





−1
1
1



+





1
1
−1



 =





0
2
0



, and





1
−1
1



+





1
1
−1



 =





2
0
0



, we have





1
0
0



 = 1

2





1
−1
1



+ 1

2





1
1
−1



,





0
1
0



 = 1

2





−1
1
1



 + 1

2





1
1
−1



, and





0
0
1



 = 1

2





−1
1
1



 + 1

2





1
−1
1



.

Since T is a linear transformation, it now follows that

T









1
0
0







 = T





1

2





1
−1
1



 +
1

2





1
1
−1









=
1

2
T









1
−1
1







 +
1

2
T









1
1
−1









=
1

2





4
0
4



 +
1

2





0
4
4



 =





2
2
4



 ,

and, similarly, T









0
1
0







 =





2
4
2



 and T









0
0
1







 =





4
2
2



.

Thus AT = [T ] =





2 2 4
2 4 2
4 2 2



. �
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10. Find a basis for the subspace S = Span

















3
−1
1
−1






,







−1
3
1
−1






,







−1
−1
1
3






,







1
1
3
1

















. [10]

Solution. We assemble the vectors of the given spanning set into the rows of a matrix
and use Gaussian elimination to reduce the matrix:







3 −1 1 −1
−1 3 1 −1
−1 −1 1 3
1 1 3 1







R1 ↔ R4

=⇒







1 1 3 1
−1 3 1 −1
−1 −1 1 3
3 −1 1 −1







=⇒
R2 + R1

R3 + R1

R4 − 3R1







1 1 3 1
0 4 4 0
0 0 4 4
0 −4 −8 −4







=⇒

R4 + 3R2







1 1 3 1
0 4 4 0
0 0 4 4
0 0 −4 −4







1

4
R2

=⇒
R4 + 3R3







1 1 3 1
0 1 1 0
0 0 4 4
0 0 0 0







=⇒
1

4
R3







1 1 3 1
0 1 1 0
0 0 1 1
0 0 0 0







We can read off the required basis for S from the non-zero rows of the reduced matrix:

















1
1
3
1






,







0
1
1
0






,







0
0
1
1

















�

11. Find the distance from the point (2, 0, 1) in R
3 to the plane given by the equation

x − y − z = −1. [10]

Solution. The quickest way to do this is to plug everything into formula (4) from Section
1.3 of the text: the distance between the point B = (x0, y0, z0) and the plane P whose

equation is ax + by + cz = d is given by d(B,P) = |ax0+by0+cz0−d|√
a2+b2+c2

.

Thus the distance between the given point and plane is:

|1 · 2 − 1 · 0 − 1 · 1 − (−1)|
√

12 + (−1)2 + (−1)2
=

2√
3

To be fair, this is the kind of formula not everyone will remember, or even write down
on their aid sheet, so here is a more basic approach:

The shortest path from the given point B = (2, 0, 1) to a plane will run perpendicular
to the plane from B to a point C on the plane, so it will be parallel to the normal vector
n = [1,−1,−1] to the plane. If we pick some point A on the plane, then the distance from
B to C , |BC |, will the equal to the length of the component of the vector AB which is
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parallel to the normal vector n. That is, it will be equal to the length of the projection of
the vector AB onto n, projn(AB).

The above outlines what we’ll do:
First, we find a point A on the plane x − y − z = −1. To do this, we need only set

y = z = 0 and solve for x, which will give us A = (−1, 0, 0).
Second, we compute the vector AB by taking the difference of the coordinates of C

and A: AC = [2 − (−1), 0 − 0, 1 − 0] = [3, 0, 1].
Third, we compute projn(AB):

projn(AB) =

(

n · AB

n · n

)

n =

(

[1,−1,−1] · [3, 0, 1]

[1,−1,−1] · [1,−1,−1]

)

[1,−1,−1]

=

(

1 · 3 + 0 · (−1) + 1 · (−1)

12 + (−1)2 + (−1)2

)

[1,−1,−1] =
2

3
[1,−1,−1]

=

[

2

3
,−2

3
,−2

3

]

Finally, we compute the length of projn(AB):

‖projn(AB)‖ =

∥

∥

∥

∥

[

2

3
,−2

3
,−2

3

]∥

∥

∥

∥

=

√

(

2

3

)2

+

(

−2

3

)2

+

(

−2

3

)2

=

√

4

9
+

4

9
+

4

9
=

√

4

3
=

2√
3

Hence the distance from the point (2, 0, 1) to the plane x − y − z = −1 is 2√
3
. �

[Total = 95]

Part Null. Bonus!

00
0

. Write an original little poem about linear algebra or mathematics in general. [2]

Solution. You’re on your own on this one! �
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