Mathematics 135H - Linear algebra I: matrix algebra
 Trent University, Fall 2007
 Assignment \#5
 Due on Friday, 7 December, 2007.

Rotations in \mathbb{R}^{3}

Before you tackle this assignment, you should read $\S 3.6$ in the text and do the exercises from this section recommended in Homework Set $\# 3$. Note that most of the concrete examples and exercises in this section stick to \mathbb{R}^{2}. This assignment is concerned with extending some of the material in $\S 3.6$ on rotations about the origin in \mathbb{R}^{2} to rotations about lines through the origin in \mathbb{R}^{3}.

1. Find the matrix R_{θ}^{z} of a rotation through an angle of θ about the z-axis. [1]

Note: This rotation leaves the z-coordinate unchanged. As with rotations about the origin in \mathbb{R}^{2}, θ is measured counterclockwise, starting with the positive x-axis, when the $x y$-plane is viewed from above (i.e. from the positive z-axis).
2. Find the matrix R_{ϕ}^{y} of a rotation through an angle of ϕ about the y-axis. [1]

Note: This rotation leaves the y-coordinate unchanged. The angle ϕ should be measured counterclockwise, starting with the positive x-axis, when the $x z$-plane is viewed from the positive y-axis.
3. Find the matrix R_{α}^{x} of a rotation through an angle of α about the x-axis. [1]

Note: This rotation leaves the x-coordinate unchanged. The angle α should be measured counterclockwise, starting with the positive y-axis, when the $y z$-plane is viewed from the positive x-axis.
4. Find a combination of the rotations you obtained in $\mathbf{1 - 3}$ that moves the x-axis onto the line through the origin with direction vector $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. [2]
5. Find a combination of the rotations you obtained in $\mathbf{1 - 3}$ that moves the line through the origin with direction vector [$\left.\begin{array}{lll}1 & 1 & 1\end{array}\right]$ onto the x-axis. [1]
6. Find the matrix R of a rotation through an angle of ω about the line through the origin with direction vector [1101]. [4]
Note: The angle ω should be measured counterclockwise when the plane $x+y+z=1$ is viewed from the first octant.

Hint: Put together 3-5.

Sylvester's Theorem

A mathematician, Sylvester,
Had a wife he would often pester,
"As I raised the rank
All my null spaces shrank."
"Add them!" she said, so he kissed her.
Stefan Bilaniuk

