Mathematics 135H – Linear algebra I: matrix algebra TRENT UNIVERSITY, Fall 2007

Assignment #4 Due on Friday, 23 November, 2007. Possible limits of matrices?*

Suppose **A** is a $k \times k$ matrix for some $k \ge 2$. Consider the sequence of matrices: **A**, **A**², **A**³, ... What would it really mean to say that this sequence of matrices has some matrix **B** as its limit? That is really beyond the scope of this course, but there is one property that a limit ought to have that we can explore a little. In particular, if **B** were a limit of the sequence, it also ought to be, for any fixed m > 0, a limit of the sequence $\mathbf{AA}^m, \mathbf{A}^2\mathbf{A}^m, \mathbf{A}^3\mathbf{A}^m, \ldots$ (Note that this is the same sequence as $\mathbf{A}^m\mathbf{A}$, $\mathbf{A}^m\mathbf{A}^2$, $\mathbf{A}^m\mathbf{A}^3$, ...) We then ought to get that $\mathbf{B} = \mathbf{BA}^m = \mathbf{A}^m\mathbf{B}$. This leads to the following definition: $\mathbf{A} \ k \times k$ matrix **B** absorbs the $k \times k$ matrix **A** if $\mathbf{BA}^m = \mathbf{A}^m\mathbf{B} = \mathbf{B}$ for every m > 0.

- 1. Verify that $\mathbf{0}_k$ absorbs \mathbf{A} , for any $k \times k$ matrix \mathbf{A} . [2]
- **2.** Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_k$ such that \mathbf{A} absorbs itself. [2]
- **3.** Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_k$ such that $\mathbf{0}_k$ is the only $k \times k$ matrix that absorbs \mathbf{A} . [3]
- 4. Suppose the **A** is a $k \times k$ matrix which is absorbed by a matrix **B** which has an inverse. Show that it must be the case that $\mathbf{A} = \mathbf{I}_k$. [3]

Note: In **2** and **3**, it suffices to find an example for a particular $k \ge 2$, while in **1** and **4** you should try to give an argument that works for any $k \ge 2$. Of course, in both problems you must verify that your example does the job.

 $\frac{12 + 144 + 20 + 3\sqrt{4}}{7} + 5 \cdot 11 = 9^2 + 0$ A dozen, a gross, and a score, Plus three times the square root of four, Divided by seven, Plus five times eleven,

Is nine squared and not a bit more!

Posted to sci.math in April 1995 by Ralph Ray Craig. This is an example of a rather specialised poetical form, the equation limerick.

^{*} Limits?! What are limits doing here? You'd think you'd be safe from calculus in a linear algebra course!