Mathematics 135H - Linear algebra I: matrix algebra
 Trent University, Fall 2007
 Assignment \#4
 Due on Friday, 23 November, 2007.

 Possible limits of matrices?*

 Possible limits of matrices?*}

Suppose \mathbf{A} is a $k \times k$ matrix for some $k \geq 2$. Consider the sequence of matrices: \mathbf{A}, $\mathbf{A}^{2}, \mathbf{A}^{3}, \ldots$ What would it really mean to say that this sequence of matrices has some matrix \mathbf{B} as its limit? That is really beyond the scope of this course, but there is one property that a limit ought to have that we can explore a little. In particular, if \mathbf{B} were a limit of the sequence, it also ought to be, for any fixed $m>0$, a limit of the sequence $\mathbf{A} \mathbf{A}^{m}, \mathbf{A}^{2} \mathbf{A}^{m}, \mathbf{A}^{3} \mathbf{A}^{m}, \ldots$ (Note that this is the same sequence as $\mathbf{A}^{m} \mathbf{A}, \mathbf{A}^{m} \mathbf{A}^{2}, \mathbf{A}^{m} \mathbf{A}^{3}$, \ldots) We then ought to get that $\mathbf{B}=\mathbf{B A}^{m}=\mathbf{A}^{m} \mathbf{B}$. This leads to the following definition:

A $k \times k$ matrix \mathbf{B} absorbs the $k \times k$ matrix \mathbf{A} if $\mathbf{B} \mathbf{A}^{m}=\mathbf{A}^{m} \mathbf{B}=\mathbf{B}$ for every $m>0$.

1. Verify that $\mathbf{0}_{k}$ absorbs \mathbf{A}, for any $k \times k$ matrix \mathbf{A}. [2]
2. Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_{k}$ such that \mathbf{A} absorbs itself. [2]
3. Find an example of a $k \times k$ matrix $\mathbf{A} \neq \mathbf{0}_{k}$ such that $\mathbf{0}_{k}$ is the only $k \times k$ matrix that absorbs A. [3]
4. Suppose the \mathbf{A} is a $k \times k$ matrix which is absorbed by a matrix \mathbf{B} which has an inverse. Show that it must be the case that $\mathbf{A}=\mathbf{I}_{k}$. [3]
Note: In $\mathbf{2}$ and $\mathbf{3}$, it suffices to find an example for a particular $k \geq 2$, while in $\mathbf{1}$ and $\mathbf{4}$ you should try to give an argument that works for any $k \geq 2$. Of course, in both problems you must verify that your example does the job.

$$
\frac{12+144+20+3 \sqrt{4}}{7}+5 \cdot 11=9^{2}+0
$$

A dozen, a gross, and a score,
Plus three times the square root of four,
Divided by seven,
Plus five times eleven,
Is nine squared and not a bit more!
Posted to sci.math in April 1995 by Ralph Ray Craig. This is an example of a rather specialised poetical form, the equation limerick.

[^0]
[^0]: * Limits?! What are limits doing here? You'd think you'd be safe from calculus in a linear algebra course!

