MATH1110H-B-lab-F01-2023-10-10

October 11, 2023

```
[1]: # MATH 1110H-B Lab 2023-10-10
     #
     # Our objective is to learn to solve (simple!) differential equations
     # using SageMath. To do this, we need to be able to declare a generic
     # function, be able to take derivatives of functions, generic or
     # otherwise, and solve equations including such derivatives.
     #
     # We first declare y to be a generic function of x:
     #
     y = function('y')(x) \# y = function('y', x) should work, too.
     #
     # diff(y,x) represents the derivative of y with respect to x, and the
     # desolve command is optimized to solve equations involving derivatives.
     # Note that as with the basic solve command, desolve needs to be told
     # explicitly what to solve for.
     #
     desolve(diff(y,x) == x^2,y)
     #
     # Note the generic constant _C in the answer provided by desolve.
```

[1]: 1/3*x^3 + _C

```
[2]: # In most applications of differential equations we are also given
# requirements along the lines of "when x= we should have y= ". These
# are called "initial conditions" and can be specified in desolve by
# adding ics[<x-value>, <y-value>]. For example, if we were to specify
# that when x=4 we should have y=4 in the example above, we would type
# in:
#
desolve(diff(y,x) == x^2,y,ics=[4,4])
#
# Note that desolve then gives what was formerly a generic constant an
# explicit value.
```

[2]: 1/3*x³ - 52/3

[3]: 2*x*cos(x^2)

 $[4]: -4*x^2*\sin(x^2) + 2*\cos(x^2)$

[5]:	desolve(diff(y,x) == y^2 , y)	# desolve can also cope with equations	
		# where y also appears outside the	
		# derivative, though you may need to do	
		# a bit more work to actually finish	
		# solving for y.	

$[5]: -1/y(x) == _C + x$

[6]:	desolve(diff(y,x) == y^2 , y, ics=[500,2])	# Again, we can pin down the
		<i># generic constant by giving</i>
		# initial conditions, in this
		# case $y=2$ when $x=500$.

[6]: -1/y(x) == x - 1001/2

[7]: -0.601999867677605

[]: