Mathematics 110 - Calculus of one variable

Trent University, 2002-2003

Sollutions for Test \#2-Section A

1. Compute any three of the integrals in parts a-f. $[36=3 \times 12$ each]
a. $\int_{0}^{1} \arctan (x) d x$
b. $\int_{e}^{e^{e}} \frac{\ln (\ln (x))}{x \ln (x)} d x$
c. $\int \frac{1}{x^{2}-3 x+2} d x$
d. $\int \frac{1}{x^{2}+2 x+2} d x$
e. $\int_{0}^{\pi / 4} \sec ^{4}(x) d x$
f. $\int_{2}^{\infty} \frac{1}{x^{4}} d x$

Solutions:

a. We'll use integration by parts, with $u=\arctan (x)$ and $d v=d x$, so $d u=\frac{1}{1+x^{2}} d x$ and $v=x$.

$$
\int_{0}^{1} \arctan (x) d x=\left.x \arctan (x)\right|_{0} ^{1}=1 \cdot \arctan (1)-0 \cdot \arctan (0)=1 \cdot \frac{\pi}{4}-0 \cdot 0=\frac{\pi}{4}
$$

b. Here we'll substitute whole hog, namely $u=\ln (\ln (x))$. Note that then

$$
\frac{d u}{d x}=\frac{1}{\ln (x)} \cdot \frac{d}{d x} \ln (x)=\frac{1}{\ln (x)} \cdot \frac{1}{x} .
$$

Also, when $x=e$,

$$
u=\ln (\ln (e))=\ln (1)=0,
$$

and when $x=e^{e}$,

$$
u=\ln \left(\ln \left(e^{e}\right)\right)=\ln (e \ln (e))=\ln (e \cdot 1)=\ln (e)=1 .
$$

Hence

$$
\int_{e}^{e^{e}} \frac{\ln (\ln (x))}{x \ln (x)} d x=\int_{0}^{1} u d u=\left.\frac{1}{2} u^{2}\right|_{0} ^{1}=\frac{1}{2} 1^{2}-\frac{1}{2} 0^{2}=\frac{1}{2} .
$$

c. This one is a job for integration by partial fractions. Since $x^{2}-3 x+2=(x-2)(x-1)$,

$$
\frac{1}{x^{2}-3 x+2}=\frac{1}{(x-2)(x-1)}=\frac{A}{x-2}+\frac{B}{x-1},
$$

where $1=A(x-1)+B(x-2)=(A+B) x+(-A-2 B)$. It follows that $0=A+B$, so $A=-B$, and $1=-A-2 B=B-2 B=-B$, so $B=-1$ and $A=1$. Then:

$$
\begin{aligned}
\int \frac{1}{x^{2}-3 x+2} d x & =\int\left(\frac{1}{x-2}-\frac{1}{x-1}\right) d x=\int \frac{1}{x-2} d x-\int \frac{1}{x-1} d x \\
& =\ln (x-2)-\ln (x-1)+C=\ln \left(\frac{x-2}{x-1}\right)+C
\end{aligned}
$$

d. Note that $x^{2}+2 x+2=x^{2}+2 x+1+1=(x+1)^{2}+1$. We will use the substitution $u=x+1$, so $d u=d x$, and the fact that $\frac{d}{d u} \arctan (u)=\frac{1}{u^{2}+1}$:

$$
\int \frac{1}{x^{2}+2 x+1} d x=\int \frac{1}{(x+1)^{2}+1} d x=\int \frac{1}{u^{2}+1} d u=\arctan (u)+C
$$

e. Here we will use the fact that $\sec ^{2}(x)=1+\tan ^{2}(x)$ and the substitution $u=\tan (x)$, so $d u=\sec ^{2}(x) d x$. Note that when $x=0, u=\tan (0)=0$, and when $x=\frac{\pi}{4}, u=\tan \left(\frac{\pi}{4}\right)=1$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sec ^{4}(x) d x & =\int_{0}^{\pi / 4} \sec ^{2}(x) \sec ^{2}(x) d x \\
& =\int_{0}^{\pi / 4}\left(1+\tan ^{2}(x)\right) \sec ^{2}(x) d x=\int_{0}^{1}\left(1+u^{2}\right) d u \\
& =\left.\left(u+\frac{1}{3} u^{3}\right)\right|_{0} ^{1}=\left(1+\frac{1}{3} \cdot 1^{3}\right)-\left(0+\frac{1}{3} \cdot 0^{3}\right)=\frac{4}{3}
\end{aligned}
$$

f. Since it has an infinity in one of the limits of integration, this is obviously an improper integral.

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x^{4}} d x & =\int_{2}^{\infty} x^{-4} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} x^{-4} d x \\
& =\left.\lim _{t \rightarrow \infty} \frac{x^{-3}}{-3}\right|_{2} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{-1}{3 t^{3}}-\frac{-1}{3 \cdot 2^{3}}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{1}{24}-\frac{1}{3 t^{3}}\right)=\frac{1}{24}-0=\frac{1}{24}
\end{aligned}
$$

Note that as $t \rightarrow \infty, t^{3} \rightarrow \infty$ as well, so $\frac{1}{3 t^{3}} \rightarrow 0$.
2. Do any two of parts a-d. $[24=2 \times 12$ each $]$
a. Compute $\frac{d}{d x}\left(\int_{1}^{\cos (x)} \arccos (t) d t\right)$.

Solution. Let $y=\int_{1}^{\cos (x)} \arccos (t) d t$ and $u=\cos (x)$. Then, using the Chain Rule, the Fundamental Theorem of Calculus, and the fact that $\arccos (\cos (x))=x$:

$$
\begin{aligned}
\frac{d}{d x}\left(\int_{1}^{\cos (x)} \arccos (t) d t\right) & =\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{d}{d u}\left(\int_{1}^{u} \arccos (t) d t\right) \cdot \frac{d u}{d x} \\
& =\arccos (u) \cdot \frac{d u}{d x}=\arccos (\cos (x)) \cdot \frac{d}{d x} \cos (x) \\
& =x(-\sin (x))=-x \sin (x)
\end{aligned}
$$

b. Give both a description and a sketch of the region whose area is computed by the integral $\int_{-1}^{1} \sqrt{1-x^{2}} d x$.
Solution. Note that if $y=\sqrt{1-x^{2}}$, then $y^{2}=1-x^{2}$, so $x^{2}+y^{2}=1$. Since $y=$ $\sqrt{1-x^{2}} \geq 0$ for $-1 \leq x \leq 1$, it follows that the region in question is the one bounded above by the upper unit semicircle, i.e. $y=\sqrt{1-x^{2}}$, and below by the x-axis, i.e. $y=0$, for $-1 \leq x \leq 1$.

Here's a sketch:

c. Find the area of the region bounded by $y=x^{3}-x$ and $y=3 x$.

Solution. We first need to determine where $y=x^{3}-x$ and $y=3 x$ intersect. Setting $x^{3}-x=3 x$, which amounts to $x^{3}=4 x$, we see that $x=0$ must be one solution. The solutions with $x \neq 0$ are given by $x^{2}=4$, i.e. $x=-2$ and $x=2$.

We now need to determine when one curve is above the other, which we do by testing points between the points where the two are equal. Note that $-2<-1<0$ and $0<1<2$. Plugging in $x=-1$ into both equations gives $y=(-1)^{3}-(-1)=0$ and $y=3(-1)=-3$, so between $x=-2$ and $x=0, y=x^{3}-x$ is above $y=3 x$. Plugging in $x=1$ into both equations gives $y=1^{3}-1=0$ and $y=3 \cdot 1=3$, so between $x=0$ and $x=2, y=3 x$ is above $y=x^{3}-x$.

It follows that the area in question is given by:

$$
\begin{aligned}
& \int_{-2}^{0}\left(\left(x^{3}-x\right)-3 x\right) d x+\int_{0}^{2}\left(3 x-\left(x^{3}-x\right)\right) d x \\
= & \int_{-2}^{0}\left(x^{3}-4 x\right) d x+\int_{0}^{2}\left(4 x-x^{3}\right) d x \\
= & \left.\left(\frac{1}{4} x^{4}-\frac{4}{2} x^{2}\right)\right|_{-2} ^{0}+\left.\left(\frac{4}{2} x^{2}-\frac{1}{4} x^{4}\right)\right|_{0} ^{2} \\
= & \left(\frac{1}{4} \cdot 0^{4}-2 \cdot 0^{2}\right)-\left(\frac{1}{4} \cdot(-2)^{4}-2 \cdot 2^{2}\right)+\left(2 \cdot 2^{2}-\frac{1}{4} \cdot 2^{4}\right)-\left(2 \cdot 0^{2}-\frac{1}{4} 0^{4}\right) \\
= & (0-0)-(4-8)+(8-4)-(0-0)=8
\end{aligned}
$$

d. Compute $\int_{0}^{1}(x+1) d x$ using the Right-hand Rule.

Solution. The general Right-hand Rule formula is:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right) \cdot \frac{b-a}{n}
$$

Plugging in $a=0, b=1$, and $f(x)=x+1$ gives:

$$
\begin{aligned}
\int_{0}^{1}(x+1) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(0+i \frac{1-0}{n}\right)+1\right] \cdot \frac{1-0}{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[i \frac{1}{n}+1\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\sum_{i=1}^{n} \frac{i}{n}\right)+\left(\sum_{i=1}^{n} 1\right)\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\frac{1}{n} \sum_{i=1}^{n} i\right)+n\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{n} \cdot \frac{n(n+1)}{2}+n\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{n+1}{2}+n\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{3}{2} n+\frac{1}{2}\right]=\lim _{n \rightarrow \infty}\left[\frac{3}{2}+\frac{1}{2 n}\right]=\frac{3}{2}+0=\frac{3}{2}
\end{aligned}
$$

This computation uses the facts that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} 1=n$ along the way.
3. Consider the solid obtained by rotating the region bounded by $y=x^{2}$ and $y=1$ about the line $x=2$.
a. Sketch the solid. [5]

Solution.

b. Find the volume of the solid. [20]

Solution. We will use the method of cylindrical shells to compute the volume of the given solid of revolution. Since we rotated about a vertical line, we need to use x as the variable.

Here is the sketch for part a with a cylindrical shell drawn in:

It is easy to see from this diagram that for the cylindrical shell at x, the radius is $r=2-x$ and the height is $h=1-x^{2}$.

The volume of the solid is now computed as follows:

$$
\begin{aligned}
\int_{-1}^{1} 2 \pi r h d x= & \int_{-1}^{1} 2 \pi(2-x)\left(1-x^{2}\right) d x=2 \pi \int_{-1}^{1}\left(2-x-2 x^{2}+x^{3}\right) d x \\
= & \left.2 \pi\left(2 x-\frac{1}{2} x^{2}-\frac{2}{3} x^{3}+\frac{1}{4} x^{4}\right)\right|_{-1} ^{1} \\
= & 2 \pi\left(2 \cdot 1-\frac{1}{2} \cdot 1^{2}-\frac{2}{3} \cdot 1^{3}+\frac{1}{4} \cdot 1^{4}\right) \\
& \quad-2 \pi\left(2(-1)-\frac{1}{2}(-1)^{2}-\frac{2}{3}(-1)^{3}+\frac{1}{4}(-1)^{4}\right) \\
= & 2 \pi\left(2-\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)-2 \pi\left(-2-\frac{1}{2}+\frac{2}{3}+\frac{1}{4}\right) \\
= & \cdots=\frac{16 \pi}{3}
\end{aligned}
$$

4. Find the arc-length of the curve given by the parametric equations $x=\frac{t^{2}}{\sqrt{2}}$ and $y=\frac{t^{3}}{3}$, where $0 \leq t \leq 1$.
Solution. Note that $\frac{d x}{d t}=\frac{2 t}{\sqrt{2}}=\sqrt{2} t$ and $\frac{d y}{d t}=\frac{3 t^{2}}{3}=t^{2}$. The arc-length is then:

$$
\begin{aligned}
\int_{0}^{1} d s & =\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{1} \sqrt{(\sqrt{2} t)^{2}+\left(t^{2}\right)^{2}} d t \\
& =\int_{0}^{1} \sqrt{2 t^{2}+t^{4}} d t=\int_{0}^{1} \sqrt{t^{2}\left(2+t^{2}\right)} d t=\int_{0}^{1} t \sqrt{2+t^{2}} d t
\end{aligned}
$$

We use the substitution $u=2+t^{2}$, so $d u=2 t d t$ and $\frac{1}{2} d u=t d t$. Also, $u=2$ when $t=0$ and $u=3$ when $t=1$.

$$
\begin{aligned}
& =\int_{2}^{3} \frac{1}{2} \sqrt{u} d u=\left.\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right|_{2} ^{3}=\frac{1}{3} \cdot 3^{3 / 2}-\frac{1}{3} \cdot 2^{3 / 2} \\
& =\frac{1}{3} \cdot 3 \sqrt{3}-\frac{1}{3} \cdot 2 \sqrt{2}=\sqrt{3}-\frac{2}{3} \sqrt{2}
\end{aligned}
$$

